Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'smoothing kernel':
Найдено статей: 3
  1. Дискретизация задач по методу гидродинамики сглаженных частиц (SPH) предполагает присутствие в решении нескольких констант — параметров дискретизации. Среди них особо следует отметить модельную скорость звука $c_0$, которая связывает мгновенную плотность в SPH-частице с возникающим давлением через замыкающее уравнение состояния.

    В работе изложен подход к точному определению необходимого значения модельной скорости звука, имеющий в своей основе анализ изменения плотностей в SPH-частицах при их относительном смещении. Примером движения сплошной среды принята задача о плоском сдвиговом течении; объектом анализа является функция относительного уплотнения $\varepsilon_\rho$ в SPH-частице, определяемая формой ядра сглаживания. Идеальный плоскопараллельный относительный сдвиг частиц в области сглаживания определяет периодическое изменение их плотностей. Исследование функций $\varepsilon_\rho$, получаемых от использования различных ядер сглаживания в аппроксимации плотности с учетом такого сдвига, позволило установить пульсационный характер возникновения давлений в частицах. Кроме того, определен случай расположения соседей в области сглаживания, обеспечивающий максимум уплотнения в частице.

    Сопоставление функций $\varepsilon_\rho$ с SPH-аппроксимацией уравнения движения позволило связать параметр дискретизации $c_0$ с формой ядра сглаживания и прочими параметрами дискретного аналога задачи, в том числе коэффициентом искусственной диссипации. В результате сформулировано уравнение, обеспечивающее нахождение необходимого и достаточного для решения значения модельной скорости звука. Для трех представителей ядер сглаживания приведены выражения корня $c_0$ такого уравнения, упрощенные из полиномов до числовых коэффициентов при параметрах рассматриваемой задачи.

    Reshetnikova O.V.
    The model sound speed determination for the plane shear fluid flow problem solving by the SPH method
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 339-351

    The problem discrete statement by the smoothed particle hydrodynamics method (SPH) include a discretization constants parameters set. Of them particular note is the model sound speed $c_0$, which relates the SPH-particle instantaneous density to the resulting pressure through the equation of state.

    The paper describes an approach to the exact determination of the model sound speed required value. It is on the analysis based, how SPH-particle density changes with their relative shift. An example of the continuous medium motion taken the plane shear flow problem; the analysis object is the relative compaction function $\varepsilon_\rho$ in the SPH-particle. For various smoothing kernels was research the functions of $\varepsilon_\rho$, that allowed the pulsating nature of the pressures occurrence in particles to establish. Also the neighbors uniform distribution in the smoothing domain was determined, at which shaping the maximum of compaction in the particle.

    Through comparison the function $\varepsilon_\rho$ with the SPH-approximation of motion equation is defined associate the discretization parameter $c_0$ with the smoothing kernel shape and other problem parameters. As a result, an equation is formulated that the necessary and sufficient model sound speed value provides finding. For such equation the expressions of root $c_0$ are given for three different smoothing kernels, that simplified from polynomials to numerical coefficients for the plane shear flow problem parameters.

  2. В работе выделены два значимых геометрических параметра, влияющих на интерполяцию физических величин, в методе гидродинамики сглаженных частиц (SPH). Это коэффициент сглаживания, связывающий размер частицы с величиной радиуса сглаживания, и коэффициент объема, позволяющий корректно определять массу частицы при заданном распределении частиц в среде.

    Предложена методика оценки влияния означенных параметров на точность интерполяций в методе SPH при решении гидростатической задачи. Для оценки точности численного решения вводятся аналитические функции относительной погрешности восстановления плотности и градиента давления в среде. Функции погрешности зависят от коэффициента сглаживания и коэффициента объема. Выбор конкретной интерполяции метода SPH позволяет преобразовать дифференциальную форму функций погрешности к форме алгебраического полинома. Корни такого полинома дают значения коэффициента сглаживания, обеспечивающие минимальную погрешность соответствующей интерполяции при заданном коэффициенте объема.

    В работе осуществлены вывод и анализф ункций относительных погрешностей плотности и градиента давления на выборке популярных ядер с различными радиусами сглаживания. Установлено, что для всех рассмотренных ядер не существует общего значения коэффициента сглаживания, обеспечивающего минимальную погрешность обеих SPH-интерполяций. Выделены представители ядер с различными радиусами сглаживания, позволяющие обеспечить наименьшие погрешности SPH-интерполяций при решении гидростатической задачи. Также определены некоторые ядра, не позволяющие обеспечить корректное интерполирование при решении гидростатической задачи методом SPH.

    Potapov I.I., Reshetnikova O.V.
    The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992

    The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.

    In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.

    In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.

  3. Спиридонов А.О., Карчевский Е.М.
    Mathematical and numerical modeling of a drop-shaped microcavity laser
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1083-1090

    This paper studies electromagnetic fields, frequencies of lasing, and emission thresholds of a drop-shaped microcavity laser. From the mathematical point of view, the original problem is a nonstandard two-parametric eigenvalue problem for the Helmholtz equation on the whole plane. The desired positive parameters are the lasing frequency and the threshold gain, the corresponding eigenfunctions are the amplitudes of the lasing modes. This problem is usually referred to as the lasing eigenvalue problem. In this study, spectral characteristics are calculated numerically, by solving the lasing eigenvalue problem on the basis of the set of Muller boundary integral equations, which is approximated by the Nystr¨om method. The Muller equations have weakly singular kernels, hence the corresponding operator is Fredholm with zero index. The Nyström method is a special modification of the polynomial quadrature method for boundary integral equations with weakly singular kernels. This algorithm is accurate for functions that are well approximated by trigonometric polynomials, for example, for eigenmodes of resonators with smooth boundaries. This approach leads to a characteristic equation for mode frequencies and lasing thresholds. It is a nonlinear algebraic eigenvalue problem, which is solved numerically by the residual inverse iteration method. In this paper, this technique is extended to the numerical modeling of microcavity lasers having a more complicated form. In contrast to the microcavity lasers with smooth contours, which were previously investigated by the Nyström method, the drop has a corner. We propose a special modification of the Nyström method for contours with corners, which takes also the symmetry of the resonator into account. The results of numerical experiments presented in the paper demonstrate the practical effectiveness of the proposed algorithm.

    Spiridonov A.O., Karchevskii E.M.
    Mathematical and numerical modeling of a drop-shaped microcavity laser
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1083-1090

    This paper studies electromagnetic fields, frequencies of lasing, and emission thresholds of a drop-shaped microcavity laser. From the mathematical point of view, the original problem is a nonstandard two-parametric eigenvalue problem for the Helmholtz equation on the whole plane. The desired positive parameters are the lasing frequency and the threshold gain, the corresponding eigenfunctions are the amplitudes of the lasing modes. This problem is usually referred to as the lasing eigenvalue problem. In this study, spectral characteristics are calculated numerically, by solving the lasing eigenvalue problem on the basis of the set of Muller boundary integral equations, which is approximated by the Nystr¨om method. The Muller equations have weakly singular kernels, hence the corresponding operator is Fredholm with zero index. The Nyström method is a special modification of the polynomial quadrature method for boundary integral equations with weakly singular kernels. This algorithm is accurate for functions that are well approximated by trigonometric polynomials, for example, for eigenmodes of resonators with smooth boundaries. This approach leads to a characteristic equation for mode frequencies and lasing thresholds. It is a nonlinear algebraic eigenvalue problem, which is solved numerically by the residual inverse iteration method. In this paper, this technique is extended to the numerical modeling of microcavity lasers having a more complicated form. In contrast to the microcavity lasers with smooth contours, which were previously investigated by the Nyström method, the drop has a corner. We propose a special modification of the Nyström method for contours with corners, which takes also the symmetry of the resonator into account. The results of numerical experiments presented in the paper demonstrate the practical effectiveness of the proposed algorithm.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.