Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'two-body problem':
Найдено статей: 28
  1. Сорокин К.Э., Бывальцев П.М., Аксенов А.А., Жлуктов С.В., Савицкий Д.В., Бабулин А.А., Шевяков В.И.
    Численное моделирование обледенения в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 83-96

    Процедура сертификации самолетов транспортной категории для полетов в условиях обледенения требует проведения расчетов форм и размеров ледяных наростов, образующихся на поверхностях самолетов в различные моменты времени. В настоящее время отсутствует программный продукт российской разработки, предназначенный для численного моделирования обледенения, признанный российскими сертификационными органами. В данной работе описывается методика расчета обледенения самолетов IceVision, созданная на базе программного комплекса FlowVision.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume Of Fluid (VOF — объем жидкости в ячейке) для отслеживания нарастания льда. В этой методике решается нестационарная задача непрерывного нарастания льда в эйлеровой постановке. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В других (известных из литературы) подходах изменение формы льда учитывается путем модификации аэродинамической поверхности с использованием лагранжевой сетки, а для учета теплоотдачи в лед используется некоторая эмпирическая модель.

    Реализованная во FlowVision математическая модель предполагает возможность моделирования сухого и влажного режимов обледенения. Модель автоматически определяет зоны сухого и влажного льда. В сухой зоне температура контактной поверхности определяется с учетом сублимации льда и теплопереноса во льду. Во влажной зоне учитывается течение водяной пленки по поверхности льда. Пленка замерзает за счет испарения, теплоотдачи в лед и в воздух. Методика IceVision учитывает отрыв пленки. Для моделирования двухфазного течения воздуха и капель используется многоскоростная модель взаимопроникающих континуумов в рамках эйлерова подхода. Методика IceVision учитывает распределение капель по размерам. Численный алгоритм учитывает существенное различие временных масштабов физических процессов, сопровождающих обледенение самолета: двухфазного внешнего течения (воздуха и капель), течения водяной пленки, роста льда. В работе приводятся результаты решения тестовых задач, демонстрирующие эффективность методики IceVision и достоверность результатов FlowVision.

    Sorokin K.E., Byvaltsev P.M., Aksenov A.A., Zhluktov S.V., Savitskiy D.V., Babulin A.A., Shevyakov V.I.
    Numerical simulation of ice accretion in FlowVision software
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 83-96

    Certifying a transport airplane for the flights under icing conditions requires calculations aimed at definition of the dimensions and shapes of the ice bodies formed on the airplane surfaces. Up to date, software developed in Russia for simulation of ice accretion, which would be authorized by Russian certifying supervisory authority, is absent. This paper describes methodology IceVision recently developed in Russia on the basis of software FlowVision for calculations of ice accretion on airplane surfaces.

    The main difference of methodology IceVision from the other approaches, known from literature, consists in using technology Volume Of Fluid (VOF — volume of fluid in cell) for tracking the surface of growing ice body. The methodology assumes solving a time-depended problem of continuous grows of ice body in the Euler formulation. The ice is explicitly present in the computational domain. The energy equation is integrated inside the ice body. In the other approaches, changing the ice shape is taken into account by means of modifying the aerodynamic surface and using Lagrangian mesh. In doing so, the heat transfer into ice is allowed for by an empirical model.

    The implemented mathematical model provides capability to simulate formation of rime (dry) and glaze (wet) ice. It automatically identifies zones of rime and glaze ice. In a rime (dry) ice zone, the temperature of the contact surface between air and ice is calculated with account of ice sublimation and heat conduction inside the ice. In a glaze (wet) ice zone, the flow of the water film over the ice surface is allowed for. The film freezes due to evaporation and heat transfer inside the air and the ice. Methodology IceVision allows for separation of the film. For simulation of the two-phase flow of the air and droplets, a multi-speed model is used within the Euler approach. Methodology IceVision allows for size distribution of droplets. The computational algorithm takes account of essentially different time scales for the physical processes proceeding in the course of ice accretion, viz., air-droplets flow, water flow, and ice growth. Numerical solutions of validation test problems demonstrate efficiency of methodology IceVision and reliability of FlowVision results.

  2. Божко А.Н.
    Гиперграфовый подход в декомпозиции сложных технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022

    В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.

    Bozhko A.N.
    Hypergraph approach in the decomposition of complex technical systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1007-1022

    The article considers a mathematical model of decomposition of a complex product into assembly units. This is an important engineering problem, which affects the organization of discrete production and its operational management. A review of modern approaches to mathematical modeling and automated computer-aided of decompositions is given. In them, graphs, networks, matrices, etc. serve as mathematical models of structures of technical systems. These models describe the mechanical structure as a binary relation on a set of system elements. The geometrical coordination and integrity of machines and mechanical devices during the manufacturing process is achieved by means of basing. In general, basing can be performed on several elements simultaneously. Therefore, it represents a variable arity relation, which can not be correctly described in terms of binary mathematical structures. A new hypergraph model of mechanical structure of technical system is described. This model allows to give an adequate formalization of assembly operations and processes. Assembly operations which are carried out by two working bodies and consist in realization of mechanical connections are considered. Such operations are called coherent and sequential. This is the prevailing type of operations in modern industrial practice. It is shown that the mathematical description of such operation is normal contraction of an edge of the hypergraph. A sequence of contractions transforming the hypergraph into a point is a mathematical model of the assembly process. Two important theorems on the properties of contractible hypergraphs and their subgraphs proved by the author are presented. The concept of $s$-hypergraphs is introduced. $S$-hypergraphs are the correct mathematical models of mechanical structures of any assembled technical systems. Decomposition of a product into assembly units is defined as cutting of an $s$-hypergraph into $s$-subgraphs. The cutting problem is described in terms of discrete mathematical programming. Mathematical models of structural, topological and technological constraints are obtained. The objective functions are proposed that formalize the optimal choice of design solutions in various situations. The developed mathematical model of product decomposition is flexible and open. It allows for extensions that take into account the characteristics of the product and its production.

  3. Скворцова В.А., Абдуллин Р.Р., Степанова А.А.
    Оптимизация параметров и структуры параллельного сферического манипулятора
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1523-1534

    Статья представляет собой исследование математической модели и особенностей кинематики параллельного сферического манипулятора. Этот тип манипулятора был предложен еще в 80-х годах прошлого века и с тех пор нашел применение в экзоскелетах и реабилитационных роботах благодаря своей структуре, которая позволяет имитировать естественные движения суставов человеческого тела.

    Параллельный сферический манипулятор имеет три параллельных двухзвенных рычажных механизма, которые соединяют две платформы — базовую и мобильную. Звенья механизма имеют дугообразную форму. Геометрически манипулятор можно описать с помощью двух виртуальных пирамид, которые расположены друг над другом.

    В данной работе рассматриваются два основных типа конфигураций манипулятора (классическая и асимметричная) и решаются основные кинематические задачи для каждой из них. Исследование показывает, что асимметричное исполнение манипулятора имеет максимальное рабочее пространство, особенно когда моторы установлены в месте соединения опорных звеньев манипулятора.

    Для оптимизации параметров параллельного сферического манипулятора вводится метрика полезного объема рабочего пространства. Данная метрика представляет собой объем сектора сферы, в котором робот не испытывает внутренних коллизий или сингулярных состояний. Внутри параллельного сферического манипулятора возможны три типа сингулярных состояний: последовательная, параллельная и смешанная сингулярность. Для расчета полезного объема были учтены все три типа сингулярностей. В ходе исследования решалась задача максимизации полезного объема рабочего пространства.

    В результате исследования было обнаружено, что асимметричная конфигурация сферического манипулятора обеспечивает максимальное рабочее пространство, когда моторы расположены в месте соединения опорных звеньев механизмов робота. При этом для достижения максимального рабочего пространства параметр $\beta_1$ должен быть равен нулю градусов. Это позволило создать прототип робота, в котором вместо нижних опорных звеньев использована радиусная рельса, вдоль которой движутся моторы. Это позволило уменьшить линейные размеры самого робота и повысить жесткость конструкции.

    Полученные результаты могут быть использованы для оптимизации параметров параллельного сферического манипулятора с целью применения его в различных промышленных и научных задачах, а также для дальнейшего исследования других типов параллельных роботов и манипуляторов.

    Skvortsova V.A., Abdullin R.R., Stepanova A.A.
    Optimisation of parameters and structure of a parallel spherical manipulator
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1523-1534

    The paper is a study of the mathematical model and kinematics of a parallel spherical manipulator. This type of manipulator was proposed back in the 80s of the last century and has since found application in exoskeletons and rehabilitation robots due to its structure, which allows imitating natural joint movements of the human body.

    The Parallel Spherical Manipulator is a robot with three legs and two platforms, a base platform and a mobile platform. Its legs consist of two support links that are arc-shaped. Mathematically, the manipulator can be described using two virtual pyramids that are placed on top of each other.

    The paper considers two types of manipulator configurations: classical and asymmetric, and solves basic kinematic problems for each. The study shows that the asymmetric design of the manipulator has the maximum workspace, especially when the motors are mounted at the joints of the manipulator’s links inside legs.

    To optimize the parameters of the parallel spherical manipulator, we introduced a metric of usable workspace volume. This metric represents the volume of the sector of the sphere in which the robot does not experience internal collisions or singular states. There are three types of singular states possible within a parallel spherical manipulator — serial, parallel, and mixed singularity. We used all three types of singularities to calculate the useful volume. In our research work, we solved the problem related to maximizing the usable volume of the workspace.

    Through our research work, we found that the asymmetric configuration of the spherical manipulator maximizes the workspace when the motors are located at the articulation point of the robot leg support arms. At the same time, the parameter $\beta_1$ must be zero degrees to maximize the workspace. This allowed us to create a prototype robot in which we eliminated the use of lower links in legs in favor of a radiused rail along which the motors run. This allowed us to reduce the linear dimensions of the robot itself and gain on the stiffness of the structure.

    The results obtained can be used to optimize the parameters of the parallel spherical manipulator in various industrial and scientific applications, as well as for further research of other types of parallel robots and manipulators.

  4. Розенблат Г.М., Яшина М.В.
    Численно-аналитическое исследование движения маятника Максвелла
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 123-136

    В статье рассматривается задача об устойчивости вертикального положения маятника Максвелла при его периодических движениях вверх-вниз. Рассмотрены два типа переходных движений: остановка — происходит тогда, когда тело маятника в своем самом верхнем положении на нити (при его стандартном движении вверх) на мгновение останавливается; двухзвенный маятник — происходит тогда, когда вся нить с тела маятника выбрана (самое нижнее положение тела на нити при его стандартном движении вниз), и тело вынуждено вращаться относительно нити вокруг точки ее закрепления к телу. Показано, что при любых значениях параметров маятника это положение является неустойчивым в том смысле, что в системе возникают колебания нити около вертикали конечной амплитуды при сколь угодно малых начальных отклонениях. Кроме того, установлено, что никаких ударных явлений при движении маятника Максвелла не возникает, а сама модель этого маятника при часто используемых в литературе значениях его параметров является некорректной по Адамару. В настоящей работе показано, что вертикальное положение нитей маятника при указанных колебательных движениях тела вдоль нитей при любых невырожденных значениях параметров маятника Максвелла всегда является неустойчивым в указанном выше смысле. Причем обусловлена эта неустойчивость именно переходными движениями 2-го типа. В настоящей работе далее показано, что никаких скачков скоростей или ускорений (из-за которых могут происходить удары или рывки в натяжениях нитей) при указанных движениях рассматриваемой модели маятника Максвелла не происходит. На наш взгляд, наблюдаемые в экспериментах рывки обусловлены другими причинами, например техническим несовершенством приборов, на которых производились опыты. В работе показано, что при любых значениях параметров маятника это положение является неустойчивым в том смысле, что в системе возникают колебания нити около вертикали конечной амплитуды при сколь угодно малых начальных отклонениях.

    Rozenblat G.M., Yashina M.V.
    Numerical and analytical study of the motion of Maxwell’s pendulum
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 123-136

    The article considers the problem of the stability of the vertical position of a Maxwell pendulum during its periodic up-down movements. Two types of transition movements are considered: “stop” — occurs when the body of the pendulum in its highest position on the string (during its “standard” upward movement) stops for a moment; “two-link pendulum” — occurs when the entire thread from the body of the pendulum is selected (the lowest position of the body on the thread during its “standard” downward movement), and the body is forced to rotate relative to the thread around the point of its attachment to the body. It is shown that for any values of the pendulum parameters, this position is unstable in the sense that oscillations of the thread around the vertical of finite amplitude occur in the system for arbitrarily small initial deviations. In addition, it has been established that no shock phenomena occur during the movement of the Maxwell pendulum, and the model of this pendulum itself, with the values of its parameters often used in the literature, is incorrect according to Hadamard. In this work, it is shown that the vertical position of the pendulum threads during the indicated oscillatory movements of the body along the threads for any non-degenerate values of the parameters of the Maxwell pendulum is always unstable in the above sense. Moreover, this instability is caused precisely by transitional movements of the 2nd type. In this work, it is further shown that no jumps in speeds or accelerations (due to which shocks or “jerks” in the tension of the threads can occur) do not occur during the indicated movements of the Maxwell pendulum model under consideration. In our opinion, the “jerks” observed in the experiments are due to other reasons, for example, the technical imperfection of the instruments on which the experiments were carried out.

  5. Найштут Ю.С.
    О границе упругопластических тел минимального объема
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515

    В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.

    Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.

    Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.

    Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.

    Nayshtut Yu.S.
    On the boundaries of optimally designed elastoplastic structures
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 503-515

    This paper studies minimum volume elastoplastic bodies. One part of the boundary of every reviewed body is fixed to the same space points while stresses are set for the remaining part of the boundary surface (loaded surface). The shape of the loaded surface can change in space but the limit load factor calculated based on the assumption that the bodies are filled with elastoplastic medium must not be less than a fixed value. Besides, all varying bodies are supposed to have some type of a limited volume sample manifold inside of them.

    The following problem has been set: what is the maximum number of cavities (or holes in a two-dimensional case) that a minimum volume body (plate) can have under the above limitations? It is established that in order to define a mathematically correct problem, two extra conditions have to be met: the areas of the holes must be bigger than the small constant while the total length of the internal hole contour lines within the optimum figure must be minimum among the varying bodies. Thus, unlike most articles on optimum design of elastoplastic structures where parametric analysis of acceptable solutions is done with the set topology, this paper looks for the topological parameter of the design connectivity.

    The paper covers the case when the load limit factor for the sample manifold is quite large while the areas of acceptable holes in the varying plates are bigger than the small constant. The arguments are brought forward that prove the Maxwell and Michell beam system to be the optimum figure under these conditions. As an example, microphotographs of the standard biological bone tissues are presented. It is demonstrated that internal holes with large areas cannot be a part of the Michell system. At the same the Maxwell beam system can include holes with significant areas. The sufficient conditions are given for the hole formation within the solid plate of optimum volume. The results permit generalization for three-dimensional elastoplastic structures.

    The paper concludes with the setting of mathematical problems arising from the new problem optimally designed elastoplastic systems.

    Просмотров за год: 8.
  6. Пантелеев М.А., Бершадский Е.С., Шибеко А.М., Нечипуренко Д.Ю.
    Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995

    Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.

    Panteleev M.A., Bershadsky E.S., Shibeko A.M., Nechipurenko D.Y.
    Current issues in computational modeling of thrombosis, fibrinolysis, and thrombolysis
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 975-995

    Hemostasis system is one of the key body’s defense systems, which is presented in all the liquid tissues and especially important in blood. Hemostatic response is triggered as a result of the vessel injury. The interaction between specialized cells and humoral systems leads to the formation of the initial hemostatic clot, which stops bleeding. After that the slow process of clot dissolution occurs. The formation of hemostatic plug is a unique physiological process, because during several minutes the hemostatic system generates complex structures on a scale ranging from microns for microvessel injury or damaged endothelial cell-cell contacts, to centimeters for damaged systemic arteries. Hemostatic response depends on the numerous coordinated processes, which include platelet adhesion and aggregation, granule secretion, platelet shape change, modification of the chemical composition of the lipid bilayer, clot contraction, and formation of the fibrin mesh due to activation of blood coagulation cascade. Computer modeling is a powerful tool, which is used to study this complex system at different levels of organization. This includes study of intracellular signaling in platelets, modelling humoral systems of blood coagulation and fibrinolysis, and development of the multiscale models of thrombus growth. There are two key issues of the computer modeling in biology: absence of the adequate physico-mathematical description of the existing experimental data due to the complexity of the biological processes, and high computational complexity of the models, which doesn’t allow to use them to test physiologically relevant scenarios. Here we discuss some key unresolved problems in the field, as well as the current progress in experimental research of hemostasis and thrombosis. New findings lead to reevaluation of the existing concepts and development of the novel computer models. We focus on the arterial thrombosis, venous thrombosis, thrombosis in microcirculation and the problems of fibrinolysis and thrombolysis. We also briefly discuss basic types of the existing mathematical models, their computational complexity, and principal issues in simulation of thrombus growth in arteries.

  7. Сызранова Н.Г., Андрущенко В.А.
    Численное моделирование физических процессов, приводящих к разрушению метеороидов в атмосфере Земли
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 835-851

    В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, рассмотрено падение трех одних из самых крупных и по некоторым показателям необычных болидов в истории метеоритики: Тунгусского, Витимского и Челябинского. Их необычность заключается в отсутствии каких-либо материальных метеоритных останков и кратеров в районе предполагаемого места падения для двух первых тел и необнаружении, как предполагается, основного материнского тела для третьего тела (из-за слишком малого количества массы выпавших осколков по сравнению с оценочной массой). Изучено воздействие аэродинамических нагрузок и тепловых потоков на эти тела, приводящее к интенсивному поверхностному уносу массы и возможной фрагментации. Скорости изучаемых небесных тел, изменение их масс определяются из модернизированной системы уравнений теории метеорной физики. Важный фактор, который здесь учитывается, — это переменность параметра уноса массы метеорита под действием тепловых потоков (радиационных и конвективных) вдоль траектории полета. Процесс фрагментации болидов в настоящей работе рассматривается в рамках модели прогрессивного дробления на основе статистической теории прочности с учетом влияния масштабного фактора на предел прочности объектов. Выявлены явления и эффекты, возникающие при различных кинематических и физических параметрах каждого из этих тел. В частности, изменение баллистики их полета в более плотных слоях атмосферы, заключающееся в переходе от режима падения к режиму подъема. При этом возможна реализация следующих сценариев события: первый— возврат тела обратно в космическое пространство при его остаточной скорости, большей второй космической; второй — переход тела на орбиту спутника Земли при остаточной скорости, большей первой космической; третий — при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и выпадение на значительном расстоянии от предполагаемого места падения. Именно реализация одного из этих трех сценариев события объясняет, например, отсутствие материальных следов, в том числе и кратеров в случае Тунгусского болида в окрестности вывала леса. Предположения о возможности таких сценариев события высказывались и ранее другими авторами, а в настоящей работе их реализация подтверждена результатами численных расчетов.

    Syzranova N.G., Andruschenko V.A.
    Numerical modeling of physical processes leading to the destruction of meteoroids in the Earth’s atmosphere
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 835-851

    Within the framework of the actual problem of comet-asteroid danger, the physical processes causing the destruction and fragmentation of meteor bodies in the Earth’s atmosphere are numerically investigated. Based on the developed physicalmathematical models that determines the movements of space objects of natural origin in the atmosphere and their interaction with it, the fall of three, one of the largest and by some parameters unusual bolides in the history of meteoritics, are considered: Tunguska, Vitim and Chelyabinsk. Their singularity lies in the absence of any material meteorite remains and craters in the area of the alleged crash site for the first two bodies and the non-detection, as it is assumed, of the main mother body for the third body (due to the too small amount of mass of the fallen fragments compared to the estimated mass). The effect of aerodynamic loads and heat flows on these bodies are studied, which leads to intensive surface mass loss and possible mechanical destruction. The velocities of the studied celestial bodies and the change in their masses are determined from the modernized system of equations of the theory of meteoric physics. An important factor that is taken into account here is the variability of the meteorite mass entrainment parameter under the action of heat fluxes (radiation and convective) along the flight path. The process of fragmentation of meteoroids in this paper is considered within the framework of a progressive crushing model based on the statistical theory of strength, taking into account the influence of the scale factor on the ultimate strength of objects. The phenomena and effects arising at various kinematic and physical parameters of each of these bodies are revealed. In particular, the change in the ballistics of their flight in the denser layers of the atmosphere, consisting in the transition from the fall mode to the ascent mode. At the same time, the following scenarios of the event can be realized: 1) the return of the body back to outer space at its residual velocity greater than the second cosmic one; 2) the transition of the body to the orbit of the Earth satellite at a residual velocity greater than the first cosmic one; 3) at lower values of the residual velocity of the body, its return after some time to the fall mode and falling out at a considerable distance from the intended crash site. It is the implementation of one of these three scenarios of the event that explains, for example, the absence of material traces, including craters, in the case of the Tunguska bolide in the vicinity of the forest collapse. Assumptions about the possibility of such scenarios have been made earlier by other authors, and in this paper their implementation is confirmed by the results of numerical calculations.

  8. Матвеев А.В.
    Моделирование кинетики радиофармпрепаратов с изотопами йода в задачах ядерной медицины
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 883-905

    Радиофармацевтические препараты, меченные радиоизотопами йода, в настоящее время широко применяются в визуализирующих и невизуализирующих методах ядерной медицины. При оценке результатов радионуклидных исследований структурно-функционального состояния органов и тканей существенную роль приобретает параллельное моделирование кинетики радиофармпрепарата в организме. Сложность такого моделирования заключается в двух противоположных аспектах. С одной стороны, в чрезмерном упрощении анатомо-физиологических особенностей организма при разбиении его на компартменты, что может приводить к потере или искажению значимой для клинической диагностики информации, с другой — в излишнем учете всех возможных взаимосвязей функционирования органов и систем, что, наоборот, приведет к появлению избыточного количества абсолютно бесполезных для клинической интерпретации математических данных, либо модель становится вообще неразрешимой. В нашей работе вырабатывается единый подход к построению математических моделей кинетики радиофармпрепаратов с изотопами йода в организме человека при диагностических и терапевтических процедурах ядерной медицины. На основе данного подхода разработаны трех- и четырехкамерные фармакокинетические модели и созданы соответствующие им расчетные программы на языке программирования C++ для обработки и оценки результатов радионуклидной диагностики и терапии. Предложены различные способы идентификации модельных параметров на основе количественных данных радионуклидных исследований функционального состояния жизненно важных органов. Приведены и проанализированы результаты фармакокинетического моделирования при радионуклидной диагностике печени, почек и щитовидной железы с помощью йодсодержащих радиофармпрепаратов. С использованием клинико-диагностических данных определены индивидуальные фармакокинетические параметры транспорта разных радиофармпрепаратов в организме (транспортные константы, периоды полувыведения, максимальная активность в органе и время ее достижения). Показано, что фармакокинетические характеристики для каждого пациента являются сугубо индивидуальными и не могут быть описаны усредненными кинетическими параметрами. В рамках трех фармакокинетических моделей получены и проанализированы зависимости «активность – время» для разных органов и тканей, в том числе для тканей, в которых активность радиофармпрепарата невозможно или затруднительно измерить клиническими методами. Также обсуждаются особенности и результаты моделирования и дозиметрического планирования радиойодтерапии щитовидной железы. Показано, что значения поглощенных радиационных доз очень чувствительны к кинетическим параметрам камерной модели — транспортным константам. Поэтому при индивидуальном дозиметрическом планировании радиойодтерапии следует уделять особое внимание получению точных количественных данных ультразвукового исследования и радиометрии щитовидной железы и на их основе идентификации параметров моделирования. Работа основана на принципах и методах фармакокинетики. Для численного решения систем дифференциальных уравнений фармакокинетических моделей мы использовали методы Рунге–Кутты и метод Розенброка. Для нахождения минимума функции нескольких переменных при идентификации параметров моделирования использовался метод Хука–Дживса.

    Matveev A.V.
    Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905

    Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.