Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'tumor growth':
Найдено статей: 8
  1. Колобов А.В., Анашкина А.А., Губернов В.В., Полежаев А.А.
    Математическая модель роста опухоли с учетом дихотомии миграции и пролиферации
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 415-422

    Исследована математическая модель роста инвазивной опухоли, которая учитывает тот факт, что клетка не может одновременно активно мигрировать в ткани и пролиферировать. Переход из одного состояния в другое пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации клетки делятся, при низкой — мигрируют. Была исследована зависимость скорости роста опухоли от параметров модели. Показано, что скорость пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации она практически не меняется, а ниже порогового значения рост опухоли существенно замедляется.

    Kolobov A.V., Anashkina A.A., Gubernov V.V., Polezhaev A.A.
    Mathematical model of tumor growth with migration and proliferation dichotomy
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 415-422

    Mathematical model of infiltrative tumour growth taking into account transitions between two possible states of malignant cell is investigated. These transitions are considered to depend on oxygen level in a threshold manner: high oxygen concentration allows cell proliferation, while concentration below some critical value induces cell migration. Dependence of infiltrative tumour spreading rate on model parameters has been studied. It is demonstrated that if the level of tissue oxygenation is high, tumour spreading rate remains almost constant; otherwise the spreading rate decreases dramatically with oxygen depletion.

    Просмотров за год: 3. Цитирований: 13 (РИНЦ).
  2. Бессонов Н.М., Бочаров Г.А., Бушнита А., Вольперт В.А.
    Гибридные модели в биомедицинских приложениях
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309

    В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.

    Bessonov N.M., Bocharov G.A., Bouchnita A., Volpert V.A.
    Hybrid models in biomedical applications
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309

    The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.

    Просмотров за год: 25.
  3. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Просмотров за год: 14.
  4. Тиньков О.В., Полищук П.Г., Хачатрян Д.С., Колотаев А.В., Балаев А.Н., Осипов В.Н., Григорьев В.Ю.
    Количественный анализ «структура – противоопухолевая активность» и рациональный молекулярный дизайн бифункциональных VEGFR-2/HDAC-ингибиторов
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 911-930

    Ингибиторы гистондеацетилаз (HDACi) рассматриваются в качестве перспективного класса препаратов для лечения рака из-за их влияния на рост клеток, дифференцировку и апоптоз. Ангиогенез играет важную роль в росте солидных опухолей и развитии метастазов. Фактор роста эндотелия сосудов (VEGF) является ключевым ангиогенным агентом, который секретируется злокачественными опухолями, что индуцирует пролиферацию и миграцию эндотелиальных клеток сосудов. В настоящее время наиболее перспективной стратегией в борьбе с онкологическими заболеваниями является создание гибридных лекарств, одновременно действующих на несколько физиологических мишеней. Значительный интерес с точки зрения создания бифункциональных противоопухолевых средств представляют соединения, содержащие одновременно N-фенил-4-аминохиназолин и гидроксамовую кислоту, так как данные фрагменты по отдельности присутствуют в уже успешно применяемых противоопухолевых лекарственных средствах. В этой связи в ходе литературного анализа была сформирована выборка из 42 соединений, содержащих указанные молекулярные фрагменты и обладающих экспериментальными данными по ингибированию HDAC, VEGFR-2 и росту клеток рака легкого человека MCF-7. С использованием симплексных дескрипторов и метода опорных векторов (Support Vector Machine, SVM) для указанной выборки, предварительно разделенной на обучающий и тестовый наборы, были построены удовлетворительные (R2test = 0.64–0.87) модели количественной связи «структура–активность» (Quantitative Structure- Activity Relationship, QSAR). Для полученных QSAR-моделей была проведена структурная интерпретация. Было оценено согласованное влияние различных молекулярных фрагментов на увеличение противоопухолевой активности исследуемых соединений. Среди заместителей N-фенильного фрагмента можно выделить положительный вклад брома в пара-положении для всех трех видов активности. По результатам интерпретации был проведен рациональный молекулярный дизайн и предложены перспективные соединения. Для сравнительного QSAR-исследования использованы физико-химические дескрипторы, рассчитываемые программой HYBOT, метод случайного леса (Random Forest, RF), а также онлайн-версия экспертной системы OCHEM (https://ochem.eu). При моделировании OCHEM были выбраны PyDescriptor-дескрипторы и метод экстремального градиентного бустинга. Кроме того, полученные с помощью экспертной системы OCHEM модели были использованы для виртуального скрининга 300 соединений с целью отбора перспективных VEGFR-2/HDAC-ингибиторов для последующего синтеза и испытаний.

    Tinkov O.V., Polishchuk P.G., Khachatryan D.S., Kolotaev A.V., Balaev A.N., Osipov V.N., Grigorev B.Y.
    Quantitative analysis of “structure – anticancer activity” and rational molecular design of bi-functional VEGFR-2/HDAC-inhibitors
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 911-930

    Inhibitors of histone deacetylases (HDACi) have considered as a promising class of drugs for the treatment of cancers because of their effects on cell growth, differentiation, and apoptosis. Angiogenesis play an important role in the growth of most solid tumors and the progression of metastasis. The vascular endothelial growth factor (VEGF) is a key angiogenic agent, which is secreted by malignant tumors, which induces the proliferation and the migration of vascular endothelial cells. Currently, the most promising strategy in the fight against cancer is the creation of hybrid drugs that simultaneously act on several physiological targets. In this work, a series of hybrids bearing N-phenylquinazolin-4-amine and hydroxamic acid moieties were studied as dual VEGFR-2/HDAC inhibitors using simplex representation of the molecular structure and Support Vector Machine (SVM). The total sample of 42 compounds was divided into training and test sets. Five-fold cross-validation (5-fold) was used for internal validation. Satisfactory quantitative structure—activity relationship (QSAR) models were constructed (R2test = 0.64–0.87) for inhibitors of HDAC, VEGFR-2 and human breast cancer cell line MCF-7. The interpretation of the obtained QSAR models was carried out. The coordinated effect of different molecular fragments on the increase of antitumor activity of the studied compounds was estimated. Among the substituents of the N-phenyl fragment, the positive contribution of para bromine for all three types of activity can be distinguished. The results of the interpretation were used for molecular design of potential dual VEGFR-2/HDAC inhibitors. For comparative QSAR research we used physicochemical descriptors calculated by the program HYBOT, the method of Random Forest (RF), and on-line version of the expert system OCHEM (https://ochem.eu). In the modeling of OCHEM PyDescriptor descriptors and extreme gradient boosting was chosen. In addition, the models obtained with the help of the expert system OCHEM were used for virtual screening of 300 compounds to select promising VEGFR-2/HDAC inhibitors for further synthesis and testing.

  5. В последнее десятилетие в онкологии наряду с классическими цитотоксическими агентами при химиотерапии стали активно использоваться антиангиогенные препараты. Они направлены не на убийство злокачественных клеток, а на блокирование процесса ангиогенеза — роста новых сосудов в опухолевом микроокружении. Вещества, стимулирующие ангиогенез, в частности фактор роста эндотелия сосудов, активно вырабатываются опухолевыми клетками, находящимися в состоянии метаболического стресса. Считается, что блокирование опухолевой неоваскуляризации должно привести к нехватке питательных веществ в опухоли, а значит, и к остановке или по крайней мере к существенному замедлению ее роста. Клиническая практика применения первого антиангиогенного препарата, бевацизумаба, показала, что в ряде случаев такая терапия не влияет на скорость роста опухоли, тогда как для других типов опухолей антиангиогенная терапия обладает высоким противоопухолевым действием. Однако было показано, что при успешном замедлении роста опухоли терапия бевацизумабом может вызывать направленную прогрессию опухоли к более инвазивному, а значит, более летальному типу. Эти данные требуют теоретического анализа и определения ключевых факторов, приводящих к такой опухолевой прогрессии, которая в литературе ассоциируется с эпителиально-мезенхимальным переходом. Для решения этой задачи была разработана пространственно-распределенная математическая модель роста и антиангиогенной терапии гетерогенной опухоли, состоящей из двух субпопуляций злокачественных клеток. Одна из субпопуляций обладает свойствами, присущими эпителиальному фенотипу, — малой подвижностью и высокой скоростью пролиферации, другая соответствует мезенхимальному фенотипу и обладает высокой подвижностью и медленной скоростью деления. Проведено исследование конкурентной борьбы между этими субпопуляциями в гетерогенной опухоли как в случае роста опухоли без терапии, так и в случае монотерапии бевацизумабом. Показано, что постоянное использование антиангиогенного препарата приводит к увеличению области в пространстве параметров, где происходит доминирование мезенхимального фенотипа: в определенном диапазоне параметров в отсутствие терапии доминирует эпителиальный фенотип, а при терапии бевацизумабом начинает доминировать мезенхимальный фенотип. Данный результат является теоретическим обоснованием наблюдаемой в клинической практике направленной прогрессии опухоли к более инвазивному типу при проведении антиангиогенной терапии.

    Kuznetsov M.B., Kolobov A.V.
    Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 487-501

    In the last decade along with classical cytotoxic agents, antiangiogenic drugs have been actively used in cancer chemotherapy. They are not aimed at killing malignant cells, but at blocking the process of angiogenesis, i.e., the growth of new vessels in the tumor and its surrounding tissues. Agents that stimulate angiogenesis, in particular, vascular endothelial growth factor, are actively produced by tumor cells in the state of metabolic stress. It is believed that blocking of tumor neovascularization should lead to a shortage of nutrients flow to the tumor, and thus can stop, or at least significantly slow down its growth. Clinical practice on the use of first antiangiogenic drug bevacizumab has shown that in some cases such therapy does not influence the growth rate of the tumor, whereas for other types of malignant neoplasms antiangiogenic therapy has a high antitumor effect. However, it has been shown that along with successful slowing of tumor growth, therapy with bevacizumab can induce directed tumor progression to a more invasive, and therefore more lethal, type. These data require theoretical analysis and rationale for the evolutionary factors that lead to the observation of epithelial-mesenchymal transition. For this purpose we have developed a spatially distributed mathematical model of growth and antiangiogenic therapy of heterogeneous tumor consisting of two subpopulations of malignant cells. One of subpopulations possesses inherent characteristics of epithelial phenotype, i.e., low motility and high proliferation rate, the other one corresponds to mesenchymal phenotype having high motility and low proliferation rate. We have performed the investigation of competition between these subpopulations of heterogeneous tumor in the cases of tumor growth without therapy and under bevacizumab monotherapy. It is shown that constant use of antiangiogenic drug leads to an increase of the region in parameter space, where the dominance of mesenchymal phenotype takes place, i.e., within a certain range of parameters in the absence of therapy epithelial phenotype is dominant but during bevacizumab administration mesenchymal phenotype begins to dominate. This result provides a theoretical basis of the clinically observed directed tumor progression to more invasive type under antiangiogenic therapy.

    Просмотров за год: 10. Цитирований: 2 (РИНЦ).
  6. Красняков И.В., Брацун Д.А., Письмен Л.М.
    Математическое моделирование роста карциномы при динамическом изменении фенотипа клеток
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 879-902

    В работе предлагается двумерная хемомеханическая модель роста инвазивной карциномы в ткани эпителия. Каждая клетка ткани представляет собой эластичный многоугольник, изменяющий свою форму и размеры под действием сил давления со стороны ткани. Средние размер и форма клеток были откалиброваны на основе экспериментальных данных. Модель позволяет описывать динамические деформации в ткани эпителия как коллективную эволюцию клеток, взаимодействующих посредством обмена механическими и химическими сигналами. Общее направление роста опухоли задается линейным градиентом концентрации питательного элемента. Рост и деформация ткани осуществляются за счет механизмов деления и интеркаляции клеток. В модели предполагается, что карцинома представляет собой гетерогенное образование, составленное из клеток с разным фенотипом, которые выполняют в опухоли различные функции. Основным параметром, определяющим фенотип клетки, является степень ее адгезии к примыкающей ткани. Выделено три основных фенотипа раковых клеток: эпителиальный (Э) фенотип представлен внутренними клетками опухоли, мезенхимальный (М) фенотип представлен одиночными клетками, промежуточный фенотип представлен фронтальными клетками опухоли. При этом в модели предполагается, что фенотип каждой клетки при определенных условиях может динамически меняться за счет эпителиально-мезенхимального (ЭМ) и обратного к нему (МЭ) переходов. Для здоровых клеток выделен основной Э-фенотип, который представлен обычными клетками с сильной адгезией друг к другу. Предполагается, что здоровые клетки, которые примыкают к опухоли, под воздействием последней испытывают вынужденный ЭМ-переход и образуют М-фенотип здоровых клеток. Численное моделирование показало, что в зависимости от значений управляющих параметров, а также комбинации возможных фенотипов здоровых и раковых клеток эволюция опухоли может приводить к разнообразным структурам, отражающим самоорганизацию клеток опухоли. Проводится сравнение структур, полученных в численном эксперименте, с морфологическими структурами, ранее выявленными в клинических исследованиях карциномы молочной железы: трабекулярной, солидной, тубулярной и альвеолярной структурами, а также дискретными клетками с амебоидным поведением. Обсуждается возможный сценарий морфогенеза и типа инвазивного поведения для каждой структуры. Описан процесс метастазирования, при котором одиночная раковая клетка амебоидного фенотипа, перемещающаяся за счет интеркаляций в ткани здорового эпителия, делится и испытывает МЭ-переход с появлением вторичной опухоли.

    Krasnyakov I.V., Bratsun D.A., Pismen L.M.
    Mathematical modeling of carcinoma growth with a dynamic change in the phenotype of cells
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 879-902

    In this paper, we proposed a two-dimensional chemo-mechanical model of the growth of invasive carcinoma in epithelial tissue. Each cell is modeled by an elastic polygon, changing its shape and size under the influence of pressure forces acting from the tissue. The average size and shape of the cells have been calibrated on the basis of experimental data. The model allows to describe the dynamic deformations in epithelial tissue as a collective evolution of cells interacting through the exchange of mechanical and chemical signals. The general direction of tumor growth is controlled by a pre-established linear gradient of nutrient concentration. Growth and deformation of the tissue occurs due to the mechanisms of cell division and intercalation. We assume that carcinoma has a heterogeneous structure made up of cells of different phenotypes that perform various functions in the tumor. The main parameter that determines the phenotype of a cell is the degree of its adhesion to the adjacent cells. Three main phenotypes of cancer cells are distinguished: the epithelial (E) phenotype is represented by internal tumor cells, the mesenchymal (M) phenotype is represented by single cells and the intermediate phenotype is represented by the frontal tumor cells. We assume also that the phenotype of each cell under certain conditions can change dynamically due to epithelial-mesenchymal (EM) and inverse (ME) transitions. As for normal cells, we define the main E-phenotype, which is represented by ordinary cells with strong adhesion to each other. In addition, the normal cells that are adjacent to the tumor undergo a forced EM-transition and form an M-phenotype of healthy cells. Numerical simulations have shown that, depending on the values of the control parameters as well as a combination of possible phenotypes of healthy and cancer cells, the evolution of the tumor can result in a variety of cancer structures reflecting the self-organization of tumor cells of different phenotypes. We compare the structures obtained numerically with the morphological structures revealed in clinical studies of breast carcinoma: trabecular, solid, tubular, alveolar and discrete tumor structures with ameboid migration. The possible scenario of morphogenesis for each structure is discussed. We describe also the metastatic process during which a single cancer cell of ameboid phenotype moves due to intercalation in healthy epithelial tissue, then divides and undergoes a ME transition with the appearance of a secondary tumor.

    Просмотров за год: 46.
  7. Колобов А.В., Полежаев А.А.
    Влияние случайной подвижности злокачественных клеток на устойчивость фронта опухоли
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 225-232

    Хемотаксис играет важную роль в процессах морфогенеза и структурообразования в живой природе. Этим свойством обладают как одноклеточные организмы, так и отдельные клетки многоклеточных организмов. Эксперименты in vitro показывают, что многие типы опухолевых клеток, особенно метастатически активные, также обладают хемотаксисом. Существует целый ряд работ по моделированию роста и инвазии опухоли, использующих модель Келлера-Сигела для учета хемотаксиса. Однако аккуратный учет этого типа подвижности затруднен отсутствием сколько-нибудь надежных количественных оценок параметров хемотаксического члена. С помощью двумерной математической модели роста и инвазии опухоли, учитывающей только случайную подвижность клеток и конвективные потоки внутри плотной ткани, мы показали, что за счет конкуренции возможен рост опухоли в направлении источников питательных веществ (сосудов) в отсутствии хемотаксиса.

    Kolobov A.V., Polezhaev A.A.
    Influence of random malignant cell motility on growing tumor front stability
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232

    Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

    Просмотров за год: 5. Цитирований: 7 (РИНЦ).
  8. Разработана математическая модель роста опухоли в ткани с учетом ангиогенеза и антиангиогенной терапии. В модели учтены как конвективные потоки в ткани, так и собственная подвижность клеток опухоли. Считается, что клетка начинает мигрировать, если концентрация питательного вещества падает ниже критического уровня, и возвращается в состояние пролиферации в области с высокой концентрацией пищи. Злокачественные клетки, находящиеся в состоянии метаболического стресса, вырабатывают фактор роста эндотелия сосудов (VEGF), стимулируя опухолевый ангиогенез, что увеличивает приток питательных веществ. В работе моделируется антиангиогенный препарат, который необратимо связывается с VEGF, переводя его в неактивное состояние. Проведено численное исследование влияния концентрации и эффективности антиангиогенного препарата на скорость роста и структуру опухоли. Показано, что сама по себе противоопухолевая антиангиогенная терапия способна замедлить рост малоинвазивной опухоли, но не способна его полностью остановить.

    A mathematical model of tumor growth in tissue taking into account angiogenesis and antiangiogenic therapy is developed. In the model the convective flows in tissue are considered as well as individual motility of tumor cells. It is considered that a cell starts to migrate if the nutrient concentration falls lower than the critical level and returns into proliferation in the region with high nutrient concentration. Malignant cells in the state of metabolic stress produce vascular endothelial growth factor (VEGF), stimulating tumor angiogenesis, which increases the nutrient supply. In this work an antiangiogenic drug which bounds irreversibly to VEGF, converting it to inactive form, is modeled. Numerical analysis of influence of antiangiogenic drug concentration and efficiency on tumor rate of growth and structure is performed. It is shown that antiangiogenic therapy can decrease the growth of low-invasive tumor, but is not able to stop it completely.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.