Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование кинетики радиофармпрепаратов с изотопами йода в задачах ядерной медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 883-905Радиофармацевтические препараты, меченные радиоизотопами йода, в настоящее время широко применяются в визуализирующих и невизуализирующих методах ядерной медицины. При оценке результатов радионуклидных исследований структурно-функционального состояния органов и тканей существенную роль приобретает параллельное моделирование кинетики радиофармпрепарата в организме. Сложность такого моделирования заключается в двух противоположных аспектах. С одной стороны, в чрезмерном упрощении анатомо-физиологических особенностей организма при разбиении его на компартменты, что может приводить к потере или искажению значимой для клинической диагностики информации, с другой — в излишнем учете всех возможных взаимосвязей функционирования органов и систем, что, наоборот, приведет к появлению избыточного количества абсолютно бесполезных для клинической интерпретации математических данных, либо модель становится вообще неразрешимой. В нашей работе вырабатывается единый подход к построению математических моделей кинетики радиофармпрепаратов с изотопами йода в организме человека при диагностических и терапевтических процедурах ядерной медицины. На основе данного подхода разработаны трех- и четырехкамерные фармакокинетические модели и созданы соответствующие им расчетные программы на языке программирования C++ для обработки и оценки результатов радионуклидной диагностики и терапии. Предложены различные способы идентификации модельных параметров на основе количественных данных радионуклидных исследований функционального состояния жизненно важных органов. Приведены и проанализированы результаты фармакокинетического моделирования при радионуклидной диагностике печени, почек и щитовидной железы с помощью йодсодержащих радиофармпрепаратов. С использованием клинико-диагностических данных определены индивидуальные фармакокинетические параметры транспорта разных радиофармпрепаратов в организме (транспортные константы, периоды полувыведения, максимальная активность в органе и время ее достижения). Показано, что фармакокинетические характеристики для каждого пациента являются сугубо индивидуальными и не могут быть описаны усредненными кинетическими параметрами. В рамках трех фармакокинетических моделей получены и проанализированы зависимости «активность – время» для разных органов и тканей, в том числе для тканей, в которых активность радиофармпрепарата невозможно или затруднительно измерить клиническими методами. Также обсуждаются особенности и результаты моделирования и дозиметрического планирования радиойодтерапии щитовидной железы. Показано, что значения поглощенных радиационных доз очень чувствительны к кинетическим параметрам камерной модели — транспортным константам. Поэтому при индивидуальном дозиметрическом планировании радиойодтерапии следует уделять особое внимание получению точных количественных данных ультразвукового исследования и радиометрии щитовидной железы и на их основе идентификации параметров моделирования. Работа основана на принципах и методах фармакокинетики. Для численного решения систем дифференциальных уравнений фармакокинетических моделей мы использовали методы Рунге–Кутты и метод Розенброка. Для нахождения минимума функции нескольких переменных при идентификации параметров моделирования использовался метод Хука–Дживса.
Ключевые слова: фармакокинетическое моделирование, радиофармпрепарат, йод, фармакокинетика, радионуклидная диагностика, радионуклидная терапия.
Modeling the kinetics of radiopharmaceuticals with iodine isotopes in nuclear medicine problems
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 883-905Radiopharmaceuticals with iodine radioisotopes are now widely used in imaging and non-imaging methods of nuclear medicine. When evaluating the results of radionuclide studies of the structural and functional state of organs and tissues, parallel modeling of the kinetics of radiopharmaceuticals in the body plays an important role. The complexity of such modeling lies in two opposite aspects. On the one hand, excessive simplification of the anatomical and physiological characteristics of the organism when splitting it to the compartments that may result in the loss or distortion of important clinical diagnosis information, on the other – excessive, taking into account all possible interdependencies of the functioning of the organs and systems that, on the contrary, will lead to excess amount of absolutely useless for clinical interpretation of the data or the mathematical model becomes even more intractable. Our work develops a unified approach to the construction of mathematical models of the kinetics of radiopharmaceuticals with iodine isotopes in the human body during diagnostic and therapeutic procedures of nuclear medicine. Based on this approach, three- and four-compartment pharmacokinetic models were developed and corresponding calculation programs were created in the C++ programming language for processing and evaluating the results of radionuclide diagnostics and therapy. Various methods for identifying model parameters based on quantitative data from radionuclide studies of the functional state of vital organs are proposed. The results of pharmacokinetic modeling for radionuclide diagnostics of the liver, kidney, and thyroid using iodine-containing radiopharmaceuticals are presented and analyzed. Using clinical and diagnostic data, individual pharmacokinetic parameters of transport of different radiopharmaceuticals in the body (transport constants, half-life periods, maximum activity in the organ and the time of its achievement) were determined. It is shown that the pharmacokinetic characteristics for each patient are strictly individual and cannot be described by averaged kinetic parameters. Within the framework of three pharmacokinetic models, “Activity–time” relationships were obtained and analyzed for different organs and tissues, including for tissues in which the activity of a radiopharmaceutical is impossible or difficult to measure by clinical methods. Also discussed are the features and the results of simulation and dosimetric planning of radioiodine therapy of the thyroid gland. It is shown that the values of absorbed radiation doses are very sensitive to the kinetic parameters of the compartment model. Therefore, special attention should be paid to obtaining accurate quantitative data from ultrasound and thyroid radiometry and identifying simulation parameters based on them. The work is based on the principles and methods of pharmacokinetics. For the numerical solution of systems of differential equations of the pharmacokinetic models we used Runge–Kutta methods and Rosenbrock method. The Hooke–Jeeves method was used to find the minimum of a function of several variables when identifying modeling parameters.
-
Транспорт и адгезия тромбоцитов в условиях потока крови: роль эритроцитов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 185-200Система гемостаза служит организму для экстренного восстановления целостности стенок кровеносных сосудов при их повреждении. Главные компоненты этой системы – тромбоциты (самые маленькие клетки крови) – постоянно содержатся в крови и быстро адгезируют к месту повреждения. Миграция тромбоцитов поперёк потока крови и их попадание на место адгезии определяются характером течения крови и, в частности, физическим присутствием в крови других клеток – эритроцитов. В данном обзоре рассматриваются основные закономерности этого влияния и имеющиеся в литературе математические модели миграции тромбоцитов поперёк потока крови и их адгезии к стенке сосуда, основанные на дифференциальных уравнениях в частных производных вида «конвекция-диффузия». Обсуждаются недавние достижения в данной области. Понимание механизмов указанных процессов необходимо для построения адекватных математических моделей работы гемостатической системы в условиях потока крови в норме и патологии.
Ключевые слова: тромбоциты, течение крови, сдвиговое течение, сегрегация суспензий, адгезия клеток, дифференциальные уравнения типа «конвекция-диффузия».
Platelet transport and adhesion in shear blood flow: the role of erythrocytes
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 185-200Просмотров за год: 3. Цитирований: 8 (РИНЦ).Hemostatic system serves the organism for urgent repairs of damaged blood vessel walls. Its main components – platelets, the smallest blood cells, – are constantly contained in blood and quickly adhere to the site of injury. Platelet migration across blood flow and their hit with the wall are governed by blood flow conditions and, in particular, by the physical presence of other blood cells – erythrocytes. In this review we consider the main regularities of this influence, available mathematical models of platelet migration across blood flow and adhesion based on "convection-diffusion" PDEs, and discuss recent advances in this field. Understanding of the mechanisms of these processes is necessary for building of adequate mathematical models of hemostatic system functioning in blood flow in normal and pathological conditions.
-
Использование разностных схем для уравнения переноса со стоком при моделировании энергосетей
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1149-1164Современные системы транспортировки электроэнергии представляют собой сложные инженерные системы. В состав таких систем входят как точечные объекты (производители электроэнергии, потребители, трансформаторные подстанции), так и распределенные (линии электропередач). При создании математических моделей такие сооружения представляются в виде графов с различными типами узлов. Для исследования динамических эффектов в таких системах приходится решать численно систему дифференциальных уравнений в частных производных гиперболического типа.
В работе использован подход, аналогичный уже примененным ранее при моделировании подобных задач. Использован вариант метода расщепления. Авторами предложен свой способ расщепления. В отличие от большинства известных работ расщепление проводится не по физическим процессам (перенос без диссипации, отдельно диссипативные процессы), а на перенос со стоковыми членами и «обменную» часть. Такое расщепление делает возможным построение гибридных схем для инвариантов Римана, обладающих высоким порядком аппроксимации и минимальной диссипативной погрешностью. Для однофазной ЛЭП приведен пример построения такой гибридной разностной схемы. Предложенная разностная схема строится на основе анализа свойств схем в пространстве неопределенных коэффициентов.
Приведены примеры расчетов модельной задачи с использованием предложенного расщепления и построенной разностной схемы. На примере численных расчетов показано, что разностная схема позволяет численно воспроизводить возникающие области больших градиентов. Показано, что разностная схема позволяет обнаружить резонансы в подобных системах.
Ключевые слова: энергосети, граф, телеграфное уравнение, уравнение переноса со стоком, разностная схема, неопределенные коэффициенты, линейное программирование.
On the using the differential schemes to transport equation with drain in grid modeling
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1149-1164Modern power transportation systems are the complex engineering systems. Such systems include both point facilities (power producers, consumers, transformer substations, etc.) and the distributed elements (f.e. power lines). Such structures are presented in the form of the graphs with different types of nodes under creating the mathematical models. It is necessary to solve the system of partial differential equations of the hyperbolic type to study the dynamic effects in such systems.
An approach similar to one already applied in modeling similar problems earlier used in the work. New variant of the splitting method was used proposed by the authors. Unlike most known works, the splitting is not carried out according to physical processes (energy transport without dissipation, separately dissipative processes). We used splitting to the transport equations with the drain and the exchange between Reimann’s invariants. This splitting makes possible to construct the hybrid schemes for Riemann invariants with a high order of approximation and minimal dissipation error. An example of constructing such a hybrid differential scheme is described for a single-phase power line. The difference scheme proposed is based on the analysis of the properties of the schemes in the space of insufficient coefficients.
Examples of the model problem numerical solutions using the proposed splitting and the difference scheme are given. The results of the numerical calculations shows that the difference scheme allows to reproduce the arising regions of large gradients. It is shown that the difference schemes also allow detecting resonances in such the systems.
-
Модернизация как глобальный процесс: опыт математического моделирования
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.
При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.
Ключевые слова: модернизация, страны мира, долгосрочная демографическая и экономическая динамика, математическое моделирование.
Modernization as a global process: the experience of mathematical modeling
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.
Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.
-
Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.
В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.
Ключевые слова: компьютерное моделирование, численные методы, гиперболические системы, сеточно-характеристический численный метод, операторное расщепление, порядок сходимости.
Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.
In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.
-
Моделирование динамики макромолекулярного состава микроводорослей в накопительной культуре
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 739-756В работе методом математического моделирования проведено исследование механизмов влияния света на скорость роста и макромолекулярный состав накопительной культуры микроводорослей. Показано, что даже при единственном лимитирующем факторе рост микроводорослей сопряжен со значительным изменением биохимического состава биомассы. Отмечено, что существующие математические модели, основанные на принципах ферментативной кинетики, не учитывают возможную смену лимитирующего фактора в процессе увеличения биомассы и не позволяют описать динамику относительного содержания ее биохимических компонентов. В качестве альтернативного подхода предложена двухкомпонентная модель, в основе которой положено предположение о двухстадийности фотоавтотрофного роста. Биомассу микроводорослей можно рассматривать в виде суммы двух макромолекулярных составляющих — структурной и резервной. Предполагается пропорциональность всех структурных компонентов биомассы, что значительно упрощает математические выкладки и верификацию модели. Предлагаемая модель представлена системой двух дифференциальных уравнений: скорость синтеза резервных составляющих биомассы определяется интенсивностью света, а структурных компонентов — потоком резервов на ключевой мультиферментный комплекс. Модель учитывает, что часть резервных компонентов расходуется на пополнение пула макроэргов. Скорости синтеза структурных и резервных форм биомассы заданы линейными сплайнами, которые позволяют учесть смену лимитирующего фактора с ростом плотности накопительной культуры. Показано, что в условиях светового лимитирования накопительную кривую необходимо разделять на несколько областей: неограниченного роста, малой концентрации клеток и оптически плотной культуры. Для каждого участка получены аналитические решения предлагаемой модели, которые выражены в элементарных функциях и позволяют оценить видоспецифические коэффициенты. Проведена верификация модели на экспериментальных данных роста биомассы и динамики относительного содержания хлорофилла $a$ накопительной культуры красной морской микроводоросли Pоrphуridium purpurеum.
Ключевые слова: математическая модель, скорость роста, биохимический состав, интенсив- ность света, линейные сплайны, коэффициент поглощения света, хлорофилл $a$.
Modeling of the macromolecular composition dynamics of microalgae batch culture
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 739-756The work focuses on mathematical modeling of light influence mechanisms on macromolecular composition of microalgae batch culture. It is shown that even with a single limiting factor, the growth of microalgae is associated with a significant change in the biochemical composition of the biomass in any part of the batch curve. The well-known qualitative models of microalgae are based on concepts of enzymatic kinetics and do not take into account the possible change of the limiting factor during batch culture growth. Such models do not allow describing the dynamics of the relative content of biochemical components of cells. We proposed an alternative approach which is based on generally accepted two-stage photoautotrophic growth of microalgae. Microalgae biomass can be considered as the sum of two macromolecular components — structural and reserve. At the first stage, during photosynthesis a reserve part of biomass is formed, from which the biosynthesis of cell structures occurs at the second stage. Model also assumes the proportionality of all biomass structural components which greatly simplifies mathematical calculations and experimental data fitting. The proposed mathematical model is represented by a system of two differential equations describing the synthesis of reserve biomass compounds at the expense of light and biosynthesis of structural components from reserve ones. The model takes into account that a part of the reserve compounds is spent on replenishing the pool of macroergs. The rates of synthesis of structural and reserve forms of biomass are given by linear splines. Such approach allows us to mathematically describe the change in the limiting factor with an increase in the biomass of the enrichment culture of microalgae. It is shown that under light limitation conditions the batch curve must be divided into several areas: unlimited growth, low cell concentration and optically dense culture. The analytical solutions of the basic system of equations describing the dynamics of macromolecular biomass content made it possible to determine species-specific coefficients for various light conditions. The model was verified on the experimental data of biomass growth and dynamics of chlorophyll $a$ content of the red marine microalgae Pоrphуridium purpurеum batch culture.
-
Использование продолженных систем ОДУ для исследования математических моделей свертывания крови
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 931-951Многие свойства решений систем обыкновенных дифференциальных уравнений определяются свойствами системы в вариациях. Продолженной системой будем называть систему ОДУ, включающую в себя одновременно исходную нелинейную систему и систему уравнений в вариациях. При исследовании свойств задачи Коши для систем обыкновенных дифференциальных уравнений переход к продолженным системам позволяет исследовать многие тонкие свойства решений. Например, переход к продолженной системе позволяет повысить порядок аппроксимации численных методов, дает подходы к построению функции чувствительности без использования процедур численного дифференцирования, позволяет применять для решения обратной задачи методы повышенного порядка сходимости. Использован метод Бройдена, относящийся к классу квазиньютоновских методов. Для решения жестких систем обыкновенных дифференциальных уравнений применялся метод Розенброка с комплексными коэффициентами. В данном случае он эквивалентен методу второго порядка аппроксимации для продолженной системы.
В качестве примера использования подхода рассматривается несколько связанных между собой математических моделей свертывания крови. По результатам численных расчетов делается вывод о необходимости включения в систему уравнений описания петли положительных обратных связей по фактору свертывания XI. Приводятся оценки некоторых скоростей реакций на основе решения обратной задачи.
Рассматривается влияние освобождения фактора V при активации тромбоцитов. При модификации математической модели удалось достичь количественного соответствия по динамике производства тромбина с экспериментальными данными для искусственной системы. На основе анализа чувствительности проверена гипотеза об отсутствии влияния состава липидной мембраны (числа сайтов для тех или иных факторов системы свертывания, кроме сайтов для тромбина) на динамику процесса.
Ключевые слова: математические модели, система ОДУ, уравнение в вариациях, метод CROS, метод Бройдена, свертывание крови, тромбин, тромбоциты.
Using extended ODE systems to investigate the mathematical model of the blood coagulation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 931-951Many properties of ordinary differential equations systems solutions are determined by the properties of the equations in variations. An ODE system, which includes both the original nonlinear system and the equations in variations, will be called an extended system further. When studying the properties of the Cauchy problem for the systems of ordinary differential equations, the transition to extended systems allows one to study many subtle properties of solutions. For example, the transition to the extended system allows one to increase the order of approximation for numerical methods, gives the approaches to constructing a sensitivity function without using numerical differentiation procedures, allows to use methods of increased convergence order for the inverse problem solution. Authors used the Broyden method belonging to the class of quasi-Newtonian methods. The Rosenbroke method with complex coefficients was used to solve the stiff systems of the ordinary differential equations. In our case, it is equivalent to the second order approximation method for the extended system.
As an example of the proposed approach, several related mathematical models of the blood coagulation process were considered. Based on the analysis of the numerical calculations results, the conclusion was drawn that it is necessary to include a description of the factor XI positive feedback loop in the model equations system. Estimates of some reaction constants based on the numerical inverse problem solution were given.
Effect of factor V release on platelet activation was considered. The modification of the mathematical model allowed to achieve quantitative correspondence in the dynamics of the thrombin production with experimental data for an artificial system. Based on the sensitivity analysis, the hypothesis tested that there is no influence of the lipid membrane composition (the number of sites for various factors of the clotting system, except for thrombin sites) on the dynamics of the process.
-
Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.
Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1451-1466Dynamic scenarios leading to multistability in the form of continuous families of stable solutions are studied for a system of autonomous differential equations. The approach is based on determining the cosymmetries of the problem, calculating stationary solutions, and numerically-analytically studying their stability. The analysis is carried out for equations of the Lotka –Volterra type, describing the interaction of two predators feeding on two related prey species. For a system of ordinary differential equations of the 4th order with 11 real parameters, a numerical-analytical study of possible interaction scenarios was carried out. Relationships are found analytically between the control parameters under which the cosymmetry linear in the variables of the problem is realized and families of stationary solutions (equilibria) arise. The case of multicosymmetry is established and explicit formulas for a two-parameter family of equilibria are presented. The analysis of the stability of these solutions made it possible to reveal the division of the family into regions of stable and unstable equilibria. In a computational experiment, the limit cycles branching off from unstable stationary solutions are determined and their multipliers corresponding to multistability are calculated. Examples of the coexistence of families of stable stationary and non-stationary solutions are presented. The analysis is carried out for the growth functions of logistic and “hyperbolic” types. Depending on the parameters, scenarios can be obtained when only stationary solutions (coexistence of prey without predators and mixed combinations), as well as families of limit cycles, are realized in the phase space. The multistability scenarios considered in the work allow one to analyze the situations that arise in the presence of several related species in the range. These results are the basis for subsequent analysis when the parameters deviate from cosymmetric relationships.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"