Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'stabilization':
Найдено статей: 117
  1. Карпаев А.А., Алиев Р.Р.
    Применение упрощенного неявного метода Эйлера для решения задач электрофизиологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 845-864

    Рассматривается упрощенный неявный метод Эйлера как альтернатива явному методу Эйлера, являющемуся наиболее распространенным в области численного решения уравнений, описывающих электрическую активность нервных клеток и кардиоцитов. Многие модели электрофизиологии имеют высокую степень жесткости, так как описывают динамику процессов с существенно разными характерными временами: миллисекундная деполяризации предшествует значительно более медленной гиперполяризации при формировании потенциала действия в электровозбудимых клетках. Оценка степени жесткости в работе проводится по формуле, не требующей вычисления собственных значений матрицы Якоби системы ОДУ. Эффективность численных методов сравнивается на примере типичных представителей из классов детальных и концептуальных моделей возбудимых клеток: модели Ходжкина–Хаксли для нейронов и Алиева–Панфилова для кардиоцитов. Сравнение эффективности численных методов проведено с использованием распространенных в биомедицинских задачах видов норм. Исследовано влияние степени жесткости моделей на величину ускорения при использовании упрощенного неявного метода: выигрыш во времени при высокой степени жесткости зафиксирован только для модели Ходжкина–Хаксли. Обсуждаются целесообразность применения простых методов и методов высоких порядков точности для решения задач электрофизиологии, а также устойчивость методов. Обсуждение позволяет прояснить вопрос о причинах отказа от использования высокоточных методов в пользу простых при проведении практических расчетов. На примере модели Ходжкина–Хаксли c различными степенями жесткости вычислены производные решения высших порядков и обнаружены их значительные максимальные абсолютные значения. Последние входят в формулы констант аппроксимации и, следовательно, нивелируют малость множителя, зависящего от порядка точности. Этот факт не позволяет считать погрешности численного метода малыми. Проведенный на качественном уровне анализ устойчивости явного метода Эйлера позволяет оценить вид функции параметров модели для описания границы области устойчивости. Описание границы области устойчивости, как правило, используется при априорном принятии решения о выборе величины шага численного интегрирования.

    Karpaev A.A., Aliev R.R.
    Application of simplified implicit Euler method for electrophysiological models
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864

    A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.

  2. Киреенков А.А., Жаворонок С.И., Нуштаев Д.В.
    О моделях шины, учитывающих как деформированное состояние, так и эффекты сухого трения в области контакта
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 163-173

    Предложена новая приближенная модель качения деформируемого колеса с пневматиком, позволяющая учесть как усилия в пневматике, так и влияние сил сухого трения на устойчивость прямолинейного качения колеса при прогнозировании явления шимми. Модель основана на теории сухого трения с комбинированнойкине матикойотно сительного движения соприкасающихся тел, т. е. при одновременном качении, скольжении и верчении при учете реальнойф ормы области контакта и распределения контактного давления. Главный вектор и главный момент сил, возникающих при контактном взаимодействии с сухим трением, определяются путем интегрирования по области контакта. При этом контактное давление покоя при нулевых скоростях относительного поступательного движения и верчения и в отсутствие качения определяется из решения статической контактной задачи для пневматика с учетом его реальной структуры и физических свойств материалов. В работе использована конечно-элементная модель типового пневматика с продольным протектором. Расчет осуществлен при фиксированном внутреннем давлении наддува, заданной вертикальной силе и коэффициенте трения покоя, равном 0.5. Получены также решения задач о напряженно-деформированном состоянии пневматика при кинематическом нагружении в боковом направлении и при скручивании относительно вертикальной оси. Показано, что с достаточной степенью точности контактное взаимодействие пневматика с абсолютно жесткой опорной поверхностью можно представить в виде двух этапов — адгезии и проскальзывания, при этом, однако, форма пятна контакта остается близкой к круговой. Построены диаграммы, аппроксимирующие численные решения, для боковой силы и момента; на начальном участке взаимодействия зависимости линейны и соответствуют упругой деформации пневматика, на втором участке величины силы и момента постоянны и соответствуют силе сухого трения и моменту трения верчения. Для последних участков получены приближенные выражения для продольной и боковой силы трения, а также момента трения верчения в соответствии с теорией сухого трения с комбинированной кинематикой. Полученная модель может трактоваться как комбинация модели упруго деформируемого колеса по Келдышу, катящегося без проскальзывания, и жесткого колеса по Климову –Журавлёву, взаимодействующего с опорой посредством сил сухого трения.

    Kireenkov A.A., Zhavoronok S.I., Nushtaev D.V.
    On tire models accounting for both deformed state and coupled dry friction in a contact spot
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 163-173

    A proposed approximate model of the rolling of a deforming wheel with a pneumatic tire allows one to account as well forces in tires as the effect of the dry friction on the stability of the rolling upon the shimmy phenomenon prognosis. The model os based on the theory of the dry friction with combined kinematics of relative motion of interacting bodies, i. e. under the condition of simultaneous rolling, sliding, and spinning with accounting for the real shape of a contact spot and contact pressure distribution. The resultant vector and couple of the forces generated by the contact interaction with dry friction are defined by integration over the contact area, whereas the static contact pressure under the conditions of vanishing velocity of sliding and angular velocity of spinning is computed after the finite-element solution for the statical contact of a pneumatic with a rigid road with accounting forreal internal structure and properties of a tire. The solid finite element model of a typical tire with longitudinal thread is used below as a background. Given constant boost pressure, vertical load and static friction factor 0.5 the numerical solution is constructed, as well as the appropriate solutions for lateral and torsional kinematic loading. It is shown that the contact interaction of a pneumatic tire and an absolutely rigid road could be represented without crucial loss of accuracy as two typical stages, the adhesion and the slip; the contact area shape remains nevertheless close to a circle. The approximate diagrams are constructed for both lateral force and friction torque; on the initial stage the diagrams are linear so that corresponds to the elastic deformation of a tire while on the second stage both force and torque values are constant and correspond to the dry friction force and torque. For the last stages the approximate formulae for the longitudinal and lateral friction force and the friction torque are constructed on the background of the theory of the dry friction with combined kinematics. The obtained model can be treated as a combination of the Keldysh model of elastic wheel with no slip and spin and the Klimov rigid wheel model interacting with a road by dry friction forces.

  3. Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

    Ansori Moch.F., Sumarti N.N., Sidarto K.A., Gunadi I.I.
    An Algorithm for Simulating the Banking Network System and Its Application for Analyzing Macroprudential Policy
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1275-1289

    Modeling banking systems using a network approach has received growing attention in recent years. One of the notable models is that developed by Iori et al, who proposed a banking system model for analyzing systemic risks in interbank networks. The model is built based on the simple dynamics of several bank balance sheet variables such as deposit, equity, loan, liquid asset, and interbank lending (or borrowing) in the form of difference equations. Each bank faces random shocks in deposits and loans. The balance sheet is updated at the beginning or end of each period. In the model, banks are grouped into either potential lenders or borrowers. The potential borrowers are those that have lack of liquidity and the potential lenders are those which have excess liquids after dividend payment and channeling new investment. The borrowers and the lenders are connected through the interbank market. Those borrowers have some percentage of linkage to random potential lenders for borrowing funds to maintain their safety net of the liquidity. If the demand for borrowing funds can meet the supply of excess liquids, then the borrower bank survives. If not, they are deemed to be in default and will be removed from the banking system. However, in their paper, most part of the interbank borrowing-lending mechanism is described qualitatively rather than by detailed mathematical or computational analysis. Therefore, in this paper, we enhance the mathematical parts of borrowing-lending in the interbank market and present an algorithm for simulating the model. We also perform some simulations to analyze the effects of the model’s parameters on banking stability using the number of surviving banks as the measure. We apply this technique to analyze the effects of a macroprudential policy called loan-to-deposit ratio based reserve requirement for banking stability.

  4. Колобов А.В., Полежаев А.А.
    Влияние случайной подвижности злокачественных клеток на устойчивость фронта опухоли
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 225-232

    Хемотаксис играет важную роль в процессах морфогенеза и структурообразования в живой природе. Этим свойством обладают как одноклеточные организмы, так и отдельные клетки многоклеточных организмов. Эксперименты in vitro показывают, что многие типы опухолевых клеток, особенно метастатически активные, также обладают хемотаксисом. Существует целый ряд работ по моделированию роста и инвазии опухоли, использующих модель Келлера-Сигела для учета хемотаксиса. Однако аккуратный учет этого типа подвижности затруднен отсутствием сколько-нибудь надежных количественных оценок параметров хемотаксического члена. С помощью двумерной математической модели роста и инвазии опухоли, учитывающей только случайную подвижность клеток и конвективные потоки внутри плотной ткани, мы показали, что за счет конкуренции возможен рост опухоли в направлении источников питательных веществ (сосудов) в отсутствии хемотаксиса.

    Kolobov A.V., Polezhaev A.A.
    Influence of random malignant cell motility on growing tumor front stability
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 225-232

    Chemotaxis plays an important role in morphogenesis and processes of structure formation in nature. Both unicellular organisms and single cells in tissue demonstrate this property. In vitro experiments show that many types of transformed cell, especially metastatic competent, are capable for directed motion in response usually to chemical signal. There is a number of theoretical papers on mathematical modeling of tumour growth and invasion using Keller-Segel model for the chemotactic motility of cancer cells. One of the crucial questions for using the chemotactic term in modelling of tumour growth is a lack of reliable quantitative estimation of its parameters. The 2-D mathematical model of tumour growth and invasion, which takes into account only random cell motility and convective fluxes in compact tissue, has showed that due to competitive mechanism tumour can grow toward sources of nutrients in absence of chemotactic cell motility.

    Просмотров за год: 5. Цитирований: 7 (РИНЦ).
  5. Судаков И.А., Сукачева Т.Г.
    К вопросу об устойчивости численной схемы Патанкара
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 827-835

    В статье рассматривается устойчивость эффективной численной схемы, предложенной С.В. Патанкаром. Численная схема Патанкара нашла широкое применение в решении разнообразных прикладных задач, поэтому вопросы, связанные с математическим обоснованием этой схемы, являются достаточно актуальными.

    Sudakov I.A., Sukacheva T.G.
    Issues of Patankar's numerical scheme stability
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 827-835

    In this paper we consider the issues of Patankar's numerical scheme stability. The Patankar’s numerical scheme is applied in the most number of the applications. So, the issues of Patankar's numerical scheme stability are very important question for the applications.

    Просмотров за год: 1.
  6. Бобков В.Г., Абалакин И.В., Козубская Т.К.
    Методика расчета аэродинамических характеристик винтов вертолета на основе реберно-ориентированных схем в комплексе программ NOISEtte
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1097-1122

    В статье дается детальное описание численной методики моделирования турбулентного обтекания вращающихся винтов вертолета и расчета аэродинамических характеристик винта. В качестве базовой математической модели используется система осредненных по Рейнольдсу уравнений Навье – Стокса для вязкого сжимаемого газа, замкнутая моделью турбулентности Спаларта – Аллмараса. Итоговая модель формулируется в неинерциальной вращающейся системе координат, связанной с винтом. Для задания граничных условий на поверхности винта используются пристеночные функции.

    Численное решение полученной системы дифференциальных уравнений проводится на гибридных неструктурированных сетках, включающих призматические слои вблизи поверхности обтекаемого тела. Численный метод строится на основе оригинальных вершинно-центрированных конечно-объемных EBR-схем. Особенностью этих схем является их повышенная точность, которая достигается за счет использования реберно-ориентированной реконструкции переменных на расширенных квазиодномерных шаблонах, и умеренная вычислительная стоимость, позволяющая проводить серийные расчеты. Для приближенного решения задачи о распаде разрыва используются методы Роу и Лакса – Фридрихса. Метод Роу корректируется в случае низкоскоростных течений. При моделировании разрывов или решений с большими градиентами используется квазиодномерная WENO-схема или локальное переключение на квазиодномерную TVD-реконструкцию. Интегрирование по времени проводится по неявной трехслойной схеме второго порядка аппроксимации с линеаризацией по Ньютону системы разностных уравнений. Для решения системы линейных уравнений используется стабилизированный метод сопряженных градиентов.

    Численная методика реализована в составе исследовательского программного комплекса NOISEtte согласно двухуровневой MPI–OpenMP-модели, позволяющей с высокой эффективностью проводить расчеты на сетках, состоящих из сотен миллионов узлов, при одновременном задействовании сотен тысячп роцессорных ядер современных суперкомпьютеров.

    На основе результатов численного моделирования вычисляются аэродинамические характеристики винта вертолета, а именно сила тяги, крутящий момент и их безразмерные коэффициенты.

    Валидация разработанной методики проводится путем моделирования турбулентного обтекания двухлопастного винта Caradonna – Tung и четырехлопастного модельного винта КНИТУ-КАИ на режиме висения, рулевого винта в кольце, а также жесткого несущего винта в косом потоке. численные результаты сравниваются с имеющими экспериментальными данными.

    Bobkov V.G., Abalakin I.V., Kozubskaya T.K.
    Method for prediction of aerodynamic characteristics of helicopter rotors based on edge-based schemes in code NOISEtte
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1097-1122

    The paper gives a detailed description of the developed methods for simulating the turbulent flow around a helicopter rotor and calculating its aerodynamic characteristics. The system of Reynolds-averaged Navier – Stokes equations for a viscous compressible gas closed by the Spalart –Allmaras turbulence model is used as the basic mathematical model. The model is formulated in a non-inertial rotating coordinate system associated with a rotor. To set the boundary conditions on the surface of the rotor, wall functions are used.

    The numerical solution of the resulting system of differential equations is carried out on mixed-element unstructured grids including prismatic layers near the surface of a streamlined body.The numerical method is based on the original vertex-centered finite-volume EBR schemes. A feature of these schemes is their higher accuracy which is achieved through the use of edge-based reconstruction of variables on extended quasi-onedimensional stencils, and a moderate computational cost which allows for serial computations. The methods of Roe and Lax – Friedrichs are used as approximate Riemann solvers. The Roe method is corrected in the case of low Mach flows. When dealing with discontinuities or solutions with large gradients, a quasi-one-dimensional WENO scheme or local switching to a quasi-one-dimensional TVD-type reconstruction is used. The time integration is carried out according to the implicit three-layer second-order scheme with Newton linearization of the system of difference equations. To solve the system of linear equations, the stabilized conjugate gradient method is used.

    The numerical methods are implemented as a part of the in-house code NOISEtte according to the two-level MPI–OpenMP parallel model, which allows high-performance computations on meshes consisting of hundreds of millions of nodes, while involving hundreds of thousands of CPU cores of modern supercomputers.

    Based on the results of numerical simulation, the aerodynamic characteristics of the helicopter rotor are calculated, namely, trust, torque and their dimensionless coefficients.

    Validation of the developed technique is carried out by simulating the turbulent flow around the Caradonna – Tung two-blade rotor and the KNRTU-KAI four-blade model rotor in hover mode mode, tail rotor in duct, and rigid main rotor in oblique flow. The numerical results are compared with the available experimental data.

  7. Ревуцкая О.Л., Кулаков М.П., Фрисман Е.Я.
    Влияние изъятия на динамику численности сообщества «хищник–жертва» с учетом возрастной структуры жертвы
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 823-844

    В работе изучено влияние избирательного антропогенного изъятия на режимы динамики сообщества «хищник–жертва» с возрастной структурой. Исследуемая модель представляет собой модификацию модели Николсона–Бейли. Предполагается, что регуляция роста численности популяции жертвы осуществляется путем лимитирования выживаемости молоди. Целью работы является изучение механизмов формирования и развития динамических режимов, возникающих в модели динамики сообщества «хищник–жертва» с возрастной структурой жертвы при избирательном изъятии особей. Рассмотрены случаи, когда осуществляется изъятие только из младшего, либо только из старшего возрастного класса жертвы, либо из двух возрастных классов жертвы одновременно, либо из популяции хищника. Изучены условия устойчивого сосуществования взаимодействующих видов и сценарии возникновения колебательных режимов численности. Показано, что изъятие только молодых особей жертвы или одновременное изъятие молодых и взрослых особей приводит к расширению области значений параметров, при которых наблюдается устойчивая динамика популяции жертвы как при наличии хищника, так и без него. При этом уменьшается диапазон значений параметров, при которых отмечается бистабильность динамики, когда в зависимости от начальных условий хищник либо сохраняется в сообществе либо погибает от недостатка питания. В случае изъятия части взрослых особей жертв или хищников сохранение хищника в сообществе обеспечивается высокими значениями коэффициента рождаемости жертвы, причем при этом увеличивается параметрическая область бистабильности динамики. При изъятии как молоди жертвы, так и хищников увеличение значений выживаемости взрослых особей жертв приводит к стабилизации дина- мики видов. Продемонстрировано, что изъятие части молодых особей жертв может приводить к затуханию колебаний и стабилизировать динамику жертвы в отсутствие хищника. Более того, оно может изменить сценарий сосуществования видов — от обитания жертвы без хищника к устойчивому сосуществованию обоих видов. Выявлено, что изъятие особей жертв либо только из ее старшего возрастного класса, либо из популяции хищника может приводить к затуханию колебаний и устойчивой динамике взаимодействующего сообщества или к разрушению сообщества, то есть к гибели хищника.

    Revutskaya O.L., Kulakov M.P., Frisman E.Y.
    Influence of harvesting on the dynamics of predator-prey community with age-structure for prey
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 823-844

    The paper studies the influence of selective harvest on dynamic modes of the «predator–prey» community with age structure for prey. We use a slight modification of the Nicholson-Bailey model to describe the interaction between predator and prey. We assume the prey population size is regulated by a decrease in survival rate of juvenile with an increase in the size of age class. The aim is to study the mechanisms of formation and evolution of dynamic modes for the structured «predator–prey» community model due to selective harvesting. We considered the cases when a harvest of some part of predator or prey population or one of the prey’s age classes is realized. The conditions of stable coexistence of interacting species and scenarios of the occurrence of oscillatory modes of abundance are studied. It is shown the harvesting of only young individuals of prey or simultaneous removal of young and adult individuals leads to expansion of parameter space domain with stable dynamics of prey population both with and without a predator. At the same time, the bistability domain narrows, in which changing initial conditions leads to the predator either remains in the community or dies from lack of food. In the case of the harvest for prey adult individuals or predator, the predator preservation in the community is ensured by high values of the prey birth rate, moreover bistability domain expands. With the removal of both juvenile preys and predators, an increase in the survival rates of adult prey leads to stabilization of the community dynamics. The juveniles’ harvest can lead to damping of oscillations and stabilize the prey dynamics in the predator absence. Moreover, it can change the scenario of the coexistence of species — from habitation of preys without predators to a sustainable coexistence of both species. The harvest of some part of predator or prey or the prey’s older age class can lead to both oscillations damping and stable dynamics of the interacting species, and to the destruction of the community, that is, to the death of predator.

  8. Васильев И.А., Дубиня Н.В., Тихоцкий С.А., Начев В.А., Алексеев Д.А.
    Численная модель механического отклика самоподъемной плавучей буровой установки на сейсмические воздействия
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 853-871

    В работе представлены результаты численного моделирования напряженно-деформированного состояния самоподъемных плавучих буровых установок, использующихся для освоения шельфовых месторождений углеводородов. Изучены равновесное напряженное состояние установки, погруженной в донный грунт, и его изменение, вызванное внешним механическим воздействием. Рассмотрена частная задача, в рамках которой в роли внешнего воздействия выступает поверхностная сейсмическая волна от удаленного землетрясения. Исследован отклик системы «самоподъемная плавучая буровая установка – донный грунт» на такое воздействие: проанализировано перераспределение полей напряжений и деформаций в системе, вызванное сейсмическим воздействием. Рассмотрен вопрос устойчивости установки: продемонстрировано, что приход сейсмической волны приводит к резкому росту напряжений в определенных элементах опорных колонн, что может привести к потере устойчивости. Для численного моделирования рассмотренной контактной задачи теории упругости использован метод конечных элементов. Проверка корректности постановки задачи и сходимости ее решения была выполнена путем рассмотрения известной задачи о вдавливании жесткого цилиндра в упругое полупространство. Показано, что использующаяся для анализа устойчивости самоподъемной буровой установки численная схема дает верные результаты для рассмотренной модельной задачи при условии корректного построения сетки конечных элементов. В рамках работы были исследованы роли различных факторов, определяющих условия достижения напряжениями в самоподъемной плавучей буровой установке критических значений: рассмотрены степень выраженности сейсмического воздействия, механические свойства донного грунта и глубина погружения опорных колонн установки в грунт. Сделаны предварительные выводы о необходимости заглубления опорных колонн в донный грунт с учетомег о механических свойств и характерной для региона сейсмичности. Представленный в работе подход может быть использован в качестве инструмента для прогноза рисков, связанных с освоениемм есторождений углеводородов, расположенных на континентальном шельфе, а использованная схема численного моделирования — для решения класса контактных задач теории упругости, требующих анализа динамических процессов.

    Vasiliev I.A., Dubinya N.V., Tikhotskiy S.A., Nachev V.A., Alexeev D.A.
    Numerical model of jack-up rig’s mechanical behavior under seismic loading
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 853-871

    The paper presents results of numerical modeling of stress-strain state of jack-up rigs used for shelf hydrocarbon reservoirs exploitation. The work studied the equilibrium stress state of a jack-up rig standing on seafloor and mechanical behavior of the rig under seismic loading. Surface elastic wave caused by a distant earthquake acts a reason for the loading. Stability of jack-up rig is the main topic of the research, as stability can be lost due to redistribution of stresses and strains in the elements of the rig due to seismic loading. Modeling results revealed that seismic loading can indeed lead to intermittent growth of stresses in particular elements of the rig’s support legs resulting into stability loss. These results were obtained using the finite element-based numerical scheme. The paper contains the proof of modeling results convergence obtained from analysis of one problem — the problem of stresses and strains distributions for the contact problem of a rigid cylinder indenting on elastic half space. The comparison between numerical and analytical solutions proved the used numerical scheme to be correct, as obtained results converged. The paper presents an analysis of the different factors influencing the mechanical behavior of the studied system. These factors include the degree of seismic loading, mechanical properties of seafloor sediments, and depth of support legs penetration. The results obtained from numerical modeling made it possible to formulate preliminary conclusions regarding the need to take site-specific conditions into account whenever planning the use of jack-up rigs, especially, in the regions with seismic activity. The approach presented in the paper can be used to evaluate risks related to offshore hydrocarbon reservoirs exploitation and development, while the reported numerical scheme can be used to solve some contact problems of theory of elasticity with the need to analyze dynamic processes.

  9. Алмасри А., Цибулин В.Г.
    Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615

    В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.

    Almasri A., Tsybulin V.G.
    A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615

    The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.

  10. Кривовичев Г.В.
    Разностные схемы расщепления для системы одномерных уравнений гемодинамики
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488

    Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.

    При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.

    Krivovichev G.V.
    Difference splitting schemes for the system of one-dimensional equations of hemodynamics
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488

    The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.

    For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.