Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'models':
Найдено статей: 781
  1. Жуков Б.А., Щукина Н.А.
    Приближенная модель плоских статических задач нелинейной упругости
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 889-896

    Работа посвящена построению приближенной математической модели нелинейной теории упругости для плоской деформации. В качестве метода, реализующего символьные вычисления, применяется метод эффектов третьего порядка. Предложенная модель позволяет использовать методы линейной теории упругости для решения конкретных задач. Данный метод является пригодным для автоматического получения аналитических решений плоских задач нелинейной теории упругости о концентрации напряжений около отверстий на базе математического пакета Maple. На примере треугольного контура исследован нелинейный эффект зависимости коэффициента концентрации напряжений от уровня внешней нагрузки.

    Zhukov B.A., Shchukina N.A.
    The approximate model of plane static problems of the nonlinear elasticity theory
    Computer Research and Modeling, 2015, v. 7, no. 4, pp. 889-896

    This article is dedicated to the construction of the approximate mathematical model of the nonlinear elasticity theory for plane strain state. The third order effects method applied to symbolic computing. There three boundary value problems for the first, the second and the third order effects has been obtained within this method, which gets ability to use well-elaborated methods of the linear elasticity theory for the solution of specific problems. This method can be applied for analytical solving of plane problems of nonlinear elasticity theory of stress concentration around holes in mathematical package Maple. Considered example of the triangular hole. The influence of external loads on the stress concentration factor.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  2. Крат Ю.Г., Потапов И.И.
    Устойчивость дна в напорных каналах
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068

    В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.

    Krat Y.G., Potapov I.I.
    Bottom stability in closed conduits
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068

    In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  3. Перепёлкин Е.Е., Нянина Л.А., Полякова Р.В., Сысоев П.Н., Панасик В.А., Юдин И.П.
    Построение адаптивной сетки в окрестности «угловой точки» ферромагнетика в численном моделировании магнитной системы
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 89-99

    При численном решении краевой задачи магнитостатики в области с негладкой границей возникает вопрос о точности получаемого решения в окрестности угловой точки ферромагнетика [Zhidkov, Perepelkin, 2001]. В окрестности «угловой точки» возможен существенный рост модуля магнитного поля, что приводит к необходимости построения специальных численных алгоритмов при решении краевой задачи. В данной работе предложен алгоритм построения адаптивной сетки в окрестности угловой точки ферромагнетика, учитывающий характер поведения решения краевой задачи. Приводится пример расчета модельной задачи в области, содержащей угловую точку.

    Perepelkin E.E., Nyanina L.A., Polyakova R.V., Sysoev P.N., Panacik V.A., Yudin I.P.
    Construction of adaptive mesh in the domain with boundary «corner point» of ferromagnetic in the numerical simulation of magnetic systems
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 89-99

    At numerical solving of the boundary-value problem of magnetostatic in a domain with a boundary corner point, a question of accuracy of the obtained solution near the corner point of ferromagnetic arises [Zhidkov, Perepelkin, 2001]. Near the corner point an essential growth of the module of the magnetic field can take place, which leads to the necessity of constructing special numerical algorithms when solving the boundary-value problem. This work represents an algorithm of constructing an adaptive mesh in the domain with a boundary corner point of ferromagnetic taking into account the character of behaviour of the solution of the boundary-value problem. An example of calculating a model problem in the domain containing a corner point is given.

    Просмотров за год: 2.
  4. Зубкова Е.В., Жукова Л.А., Фролов П.В., Шанин В.Н.
    Работы А. С. Комарова по клеточно-автоматному моделированию популяционно-онтогенетических процессов у растений
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 285-295

    Рассмотрены возможности моделирования в технике клеточных автоматов применительно к травянистым растениям и кустарничкам. Приводятся основные положения дискретного описания онтогенезов растений, на которых основывается математическое моделирование. В обзоре обсуждаются основные результаты, полученные с использованием моделей и раскрывающие закономерности функционирования ценопопуляций и сообществ. Описана модель CAMPUS и результаты компьютерного эксперимента по разрастанию двух клонов брусники с разной геометрией побегов. Публикация посвящена работам профессора А. С. Комарова, основоположника направления; дан список его основных публикаций по этой тематике.

    Zubkova E.V., Zhukova L.A., Frolov P.V., Shanin V.N.
    A.S. Komarov’s publications about cellular automata modelling of the population-ontogenetic development in plants: a review
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 285-295

    The possibilities of cellular automata simulation applied to herbs and dwarf shrubs are described. Basicprinciples of discrete description of the ontogenesis of plants on which the mathematical modeling based are presents. The review discusses the main research results obtained with the use of models that revealing the patterns of functioning of populations and communities. The CAMPUS model and the results of computer experiment to study the growth of two clones of lingonberry with different geometry of the shoots are described. The paper is dedicated to the works of the founder of the direction of prof. A. S. Komarov. A list of his major publications on this subject is given.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  5. Губанов С.М., Дурновцев М.И., Картавых А.А., Крайнов А.Ю.
    Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529

    В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.

    Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  6. Угольницкий Г.А., Усов А.Б.
    Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684

    Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.

    Ougolnitsky G.A., Usov A.B.
    Game-theoretic model of coordinations of interests at innovative development of corporations
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 673-684

    Dynamic game theoretic models of the corporative innovative development are investigated. The proposed models are based on concordance of private and public interests of agents. It is supposed that the structure of interests of each agent includes both private (personal interests) and public (interests of the whole company connected with its innovative development first) components. The agents allocate their personal resources between these two directions. The system dynamics is described by a difference (not differential) equation. The proposed model of innovative development is studied by simulation and the method of enumeration of the domains of feasible controls with a constant step. The main contribution of the paper consists in comparative analysis of efficiency of the methods of hierarchical control (compulsion or impulsion) for information structures of Stackelberg or Germeier (four structures) by means of the indices of system compatibility. The proposed model is a universal one and can be used for a scientifically grounded support of the programs of innovative development of any economic firm. The features of a specific company are considered in the process of model identification (a determination of the specific classes of model functions and numerical values of its parameters) which forms a separate complex problem and requires an analysis of the statistical data and expert estimations. The following assumptions about information rules of the hierarchical game are accepted: all players use open-loop strategies; the leader chooses and reports to the followers some values of administrative (compulsion) or economic (impulsion) control variables which can be only functions of time (Stackelberg games) or depend also on the followers’ controls (Germeier games); given the leader’s strategies all followers simultaneously and independently choose their strategies that gives a Nash equilibrium in the followers’ game. For a finite number of iterations the proposed algorithm of simulation modeling allows to build an approximate solution of the model or to conclude that it doesn’t exist. A reliability and efficiency of the proposed algorithm follow from the properties of the scenario method and the method of a direct ordered enumeration with a constant step. Some comprehensive conclusions about the comparative efficiency of methods of hierarchical control of innovations are received.

    Просмотров за год: 9. Цитирований: 6 (РИНЦ).
  7. Разные варианты моделей переключающегося режима воспроизводства описывают совокупность взаимодействующих друг с другом макроэкономических производственных подсистем, каждой из которых соответствует свое домашнее хозяйство. Эти подсистемы различаются между собой по возрасту используемого ими основного капитала, поскольку они по очереди останавливают производство продукции для его обновления собственными силами (для ремонта оборудования и для привнесения инноваций, увеличивающих эффективность производства). Это принципиально отличает данный тип моделей от моделей, описывающих режим совместного воспроизводства, при котором обновление основного капитала и производство продукта происходят одновременно. Модели переключающегося режима воспроизводства позволяют наглядно описать механизмы таких явлений, как денежные кругообороты и амортизация, а также описывать различные виды монетарной политики, позволяют по-новому интерпретировать механизмы экономического роста. В отличие от многих других макроэкономических моделей модели этого класса, в которых конкурирующие между собой подсистемы поочередно приобретают преимущество над остальными за счет обновления, принципиально не равновесны. Изначально они были описаны в виде систем обыкновенных дифференциальных уравнений со скачкообразно меняющимися коэффициентами. В численных расчетах, проводившихся для этих систем, в зависимости от значений параметров и начальных условий была выявлена как регулярная, так и нерегулярная динамика. В данной работе показано, что простейшие варианты этой модели без использования дополнительных приближений могут быть представлены в дискретной форме (в виде нелинейных отображений) при различных вариантах (непрерывных и дискретных) финансовых потоков между подсистемами (интерпретируемых как зарплаты и субсидии). Эта форма представления более удобна для получения строгих аналитических результатов, а также для проведения более экономных и точных численных расчетов. В частности, ее использование позволило определить начальные условия, соответствующие скоординированному, устойчивому экономическому росту без систематического отставания в производительности одних подсистем от других.

    Different versions of the shifting mode of reproduction models describe set of the macroeconomic production subsystems interacting with each other, to each of which there corresponds the household. These subsystems differ among themselves on age of the fixed capital used by them as they alternately stop production for its updating by own forces (for repair of the equipment and for introduction of the innovations increasing production efficiency). It essentially distinguishes this type of models from the models describing the mode of joint reproduction in case of which updating of fixed capital and production of a product happen simultaneously. Models of the shifting mode of reproduction allow to describe mechanisms of such phenomena as cash circulations and amortization, and also to describe different types of monetary policy, allow to interpret mechanisms of economic growth in a new way. Unlike many other macroeconomic models, model of this class in which the subsystems competing among themselves serially get an advantage in comparison with the others because of updating, essentially not equilibrium. They were originally described as a systems of ordinary differential equations with abruptly varying coefficients. In the numerical calculations which were carried out for these systems depending on parameter values and initial conditions both regular, and not regular dynamics was revealed. This paper shows that the simplest versions of this model without the use of additional approximations can be represented in a discrete form (in the form of non-linear mappings) with different variants (continuous and discrete) financial flows between subsystems (interpreted as wages and subsidies). This form of representation is more convenient for receipt of analytical results as well as for a more economical and accurate numerical calculations. In particular, its use allowed to determine the entry conditions corresponding to coordinated and sustained economic growth without systematic lagging in production of a product of one subsystems from others.

    Просмотров за год: 1. Цитирований: 4 (РИНЦ).
  8. Горшков А.В., Просвиряков Е.Ю.
    Слоистая конвекция Бенара–Марангони при теплообмене по закону Ньютона–Рихмана
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 927-940

    В работе осуществлено математическое моделирование нестационарной слоистой конвекции Бенара–Марангони вязкой несжимаемой жидкости. Движение жидкости происходит в бесконечно протяженном слое. Система Обербека–Буссинеска, описывающая слоистую конвекцию Бенара–Марангони, является переопределенной, поскольку вертикальная скорость тождественно равна нулю. Для вычисления двух компонент вектора скорости, температурыи давления имеется система пяти уравнений (три уравнения сохранения импульсов, уравнение несжимаемости и уравнение теплопроводности). Для разрешимости системы Обербека–Буссинеска предложен класс точных решений. Структура предложенного решения такова, что уравнение несжимаемости удовлетворяется тождественно. Таким образом, удается устранить «лишнее» уравнение. Основное внимание уделено исследованию теплообмена на свободной границе слоя, которая считается недеформируемой. При описании термокапиллярного конвективного движения теплообмен задавался согласно закону Ньютона–Рихмана. Использование такого закона распространения тепла приводит к начально-краевой задаче третьего рода. Показано, что переопределенная начально-краевая задача в рамках представленного в статье класса точных решений уравнений Обербека–Буссинеска сводится к проблеме Штурма–Лиувилля. Следовательно, гидродинамические поля выражаются через тригонометрические функции (базис Фурье). Для определения собственных чисел задачи получено трансцендентное уравнение, которое решалось численно. Проведен численный анализ решений системы эволюционных и градиентных уравнений, описывающих течение жидкости. На основании вычислительного эксперимента проведен анализ гидродинамических полей. При исследовании краевой задачи было показано существование противотечений в слое жидкости. Существование противотечений эквивалентно наличию застойных точек в жидкости, что говорит о существовании локального экстремума кинетической энергии жидкости. Установлено, что у каждой компонентыск орости может быть не более одного нулевого значения. Таким образом, поток жидкости расслаивается на две зоны. В этих зонах касательные напряжения разного знака. Причем существует толщина слоя жидкости, при которой на нижней границе слоя жидкости касательные напряжения равны нулю. Данный физический эффект возможен только для классических ньютоновских жидкостей. Для поля температурыи давления справедливы те же свойства, что и для скоростей. Отметим, что в данном случае все нестационарные решения выходят на установившийся режим.

    Gorshkov A.V., Prosviryakov Y.Y.
    Layered Bénard–Marangoni convection during heat transfer according to the Newton’s law of cooling
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 927-940

    The paper considers mathematical modeling of layered Benard–Marangoni convection of a viscous incompressible fluid. The fluid moves in an infinitely extended layer. The Oberbeck–Boussinesq system describing layered Benard–Marangoni convection is overdetermined, since the vertical velocity is zero identically. We have a system of five equations to calculate two components of the velocity vector, temperature and pressure (three equations of impulse conservation, the incompressibility equation and the heat equation). A class of exact solutions is proposed for the solvability of the Oberbeck–Boussinesq system. The structure of the proposed solution is such that the incompressibility equation is satisfied identically. Thus, it is possible to eliminate the «extra» equation. The emphasis is on the study of heat exchange on the free layer boundary, which is considered rigid. In the description of thermocapillary convective motion, heat exchange is set according to the Newton’s law of cooling. The application of this heat distribution law leads to the third-kind initial-boundary value problem. It is shown that within the presented class of exact solutions to the Oberbeck–Boussinesq equations the overdetermined initial-boundary value problem is reduced to the Sturm–Liouville problem. Consequently, the hydrodynamic fields are expressed using trigonometric functions (the Fourier basis). A transcendental equation is obtained to determine the eigenvalues of the problem. This equation is solved numerically. The numerical analysis of the solutions of the system of evolutionary and gradient equations describing fluid flow is executed. Hydrodynamic fields are analyzed by a computational experiment. The existence of counterflows in the fluid layer is shown in the study of the boundary value problem. The existence of counterflows is equivalent to the presence of stagnation points in the fluid, and this testifies to the existence of a local extremum of the kinetic energy of the fluid. It has been established that each velocity component cannot have more than one zero value. Thus, the fluid flow is separated into two zones. The tangential stresses have different signs in these zones. Moreover, there is a fluid layer thickness at which the tangential stresses at the liquid layer equal to zero on the lower boundary. This physical effect is possible only for Newtonian fluids. The temperature and pressure fields have the same properties as velocities. All the nonstationary solutions approach the steady state in this case.

    Просмотров за год: 10. Цитирований: 3 (РИНЦ).
  9. Калашников С.В., Кривощапов А.А., Митин А.Л., Николаев Н.В.
    Расчетные исследования аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» с помощью программного комплекса FlowVision
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 67-74

    Модернизация методики аэродинамического эксперимента на современном уровне подразумевает создание математических моделей аэродинамических труб (электронных АДТ), предназначенных для вычислительного сопровождения экспериментальных исследований. Применение электронных АДТ в перспективе способно обеспечить получение достоверных аэродинамических характеристик летательных аппаратов по результатам исследования их моделей в аэродинамических трубах, согласования результатов, полученных на разных экспериментальных установках, сравнения расчетов моделей в безграничном потоке с учетом влияния подвесных устройств и границ потока в рабочей части экспериментальной установки.

    Решение данной задачи требует создания научного задела, что, в свою очередь, подразумевает выполнение экспериментальных методических исследований и обширного комплекса расчетных исследований на основе численного решения осредненных по Рейнольдсу уравнений Навье–Стокса с применением суперкомпьютерных технологий. При этом на различных этапах расчетных исследований необходимо моделировать не только летательный аппарат, но и комплексную геометрию рабочей части аэродинамической трубы и подвесных устройств, что требует дополнительных методических расчетов. Также определенные трудности может представлять моделирование ламинарно-турбулентного перехода на поверхности модели, который в большинстве случаев имеет место в условиях эксперимента.

    В данной работе представлены результаты расчетов аэродинамических характеристик тематической модели летательного аппарата схемы «летающее крыло» в безграничном потоке при разных углах атаки, полученные в рамках первого этапа работы по созданию математической модели рабочей части аэродинамической трубы Т-102 ЦАГИ. Расчеты выполнялись с использованием двухпараметрической k–ε модели турбулентности со специальными пристеночными функциями, приспособленными для расчета отрывных течений. В рамках данной работы исследовались основные продольные аэродинамические характеристики, было выполнено сравнение с результатами экспериментальных исследований в аэродинамической трубе Т-102 ЦАГИ с учетом погрешностей.

    Kalashnikov S.V., Krivoschapov A.A., Mitin A.L., Nikolaev N.V.
    Computational investigation of aerodynamic performance of the generic flying-wing aircraft model using FlowVision computational code
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 67-74

    Modern approach to modernization of the experimental techniques involves design of mathematical models of the wind-tunnel, which are also referred to as Electronic of Digital Wind-Tunnels. They are meant to supplement experimental data with computational analysis. Using Electronic Wind-Tunnels is supposed to provide accurate information on aerodynamic performance of an aircraft basing on a set of experimental data, to obtain agreement between data from different test facilities and perform comparison between computational results for flight conditions and data with the presence of support system and test section.

    Completing this task requires some preliminary research, which involves extensive wind-tunnel testing as well as RANS-based computational research with the use of supercomputer technologies. At different stages of computational investigation one may have to model not only the aircraft itself but also the wind-tunnel test section and the model support system. Modelling such complex geometries will inevitably result in quite complex vertical and separated flows one will have to simulate. Another problem is that boundary layer transition is often present in wind-tunnel testing due to quite small model scales and therefore low Reynolds numbers.

    In the current article the first stage of the Electronic Wind-Tunnel design program is covered. This stage involves computational investigation of aerodynamic characteristics of the generic flying-wing UAV model previously tested in TsAGI T-102 wind-tunnel. Since this stage is preliminary the model was simulated without taking test-section and support system geometry into account. The boundary layer was considered to be fully turbulent.

    For the current research FlowVision computational code was used because of its automatic grid generation feature and stability of the solver when simulating complex flows. A two-equation k–ε turbulence model was used with special wall functions designed to properly capture flow separation. Computed lift force and drag force coefficients for different angles-of-attack were compared to the experimental data.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  10. Андреева А.А., Николаев А.В., Лобанов А.И.
    Исследование точечной математической модели полимеризации фибрина
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 247-258

    Функциональное моделирование процессов свертывания крови, в частности возникновения фибрин–полимерных сгустков, имеет большое значение для прикладных вопросов медицинской биофизики. Несмотря на некоторые неточности в математических моделях, качественные результаты представляют огромный интерес для экспериментаторов как средство анализа возможных вариантов развития их работ. При достижении хорошего количественного совпадения с экспериментальными результатами такие модели могут быть использованы для технологических применений. Целью данной работы является моделирование процесса многоступенчатой полимеризации фибрина и сопряженного с ними золь-гель-перехода — возникновения фибрин-полимерной сетки в точечной системе. Для программной реализации и численных экспериментов используется неявный метод Розенброка второго порядка с комплексными коэффициентами (CROS). В работе представлены результаты моделирования и проведен анализ чувствительности численных решений к коэффициентам математической модели методами вариации. Показано, что в физиологическом диапазоне параметров констант модели существует лаг-период 20 секунд между началом реакции и возникновением зародышей фибрин-полимерной сетки, что хорошо соответствует экспериментальным наблюдениям подобных систем. Показана возможность появления нескольких $(n = 1–3)$ последовательных золь-гель-переходов. Такое необычное поведение системы является прямым следствием наличия нескольких фаз в процессе полимеризации фибрина. На последнем этапе раствор олигомеров фибрина длины 10 может достичь полуразбавленного состояния. Это, в свою очередь, приведет к исключительно быстрой кинетике формирования фибрин-полимерной сетки, управляемой вращательной диффузией олигомеров. Если же состояние полуразбавленного раствора не достигается, то образование фибрин-полимерной сетки контролируется трансляционной диффузией, которая является существенно более медленным процессом. Такой дуализм в процессе золь-гель-перехода привел к необходимости введения функции переключения в уравнения для кинетики образования фибрин-полимера. Ситуация с последовательными золь-гель-переходами соответствует экспериментальным системам, где вследствие физических процессов, таких как пресипитация, фибрин-полимерная сетка может быть быстро удалена из объема.

    Andreeva A.A., Nikolaev A.V., Lobanov A.I.
    Analysis of point model of fibrin polymerization
    Computer Research and Modeling, 2017, v. 9, no. 2, pp. 247-258

    Functional modeling of blood clotting and fibrin-polymer mesh formation is of a significant value for medical and biophysics applications. Despite the fact of some discrepancies present in simplified functional models their results are of the great interest for the experimental science as a handy tool of the analysis for research planning, data processing and verification. Under conditions of the good correspondence to the experiment functional models can be used as an element of the medical treatment methods and biophysical technologies. The aim of the paper in hand is a modeling of a point system of the fibrin-polymer formation as a multistage polymerization process with a sol-gel transition at the final stage. Complex-value Rosenbroke method of second order (CROS) used for computational experiments. The results of computational experiments are presented and discussed. It was shown that in the physiological range of the model coefficients there is a lag period of approximately 20 seconds between initiation of the reaction and fibrin gel appearance which fits well experimental observations of fibrin polymerization dynamics. The possibility of a number of the consequent $(n = 1–3)$ sol-gel transitions demonstrated as well. Such a specific behavior is a consequence of multistage nature of fibrin polymerization process. At the final stage the solution of fibrin oligomers of length 10 can reach a semidilute state, leading to an extremely fast gel formation controlled by oligomers’ rotational diffusion. Otherwise, if the semidilute state is not reached the gel formation is controlled by significantly slower process of translational diffusion. Such a duality in the sol-gel transition led authors to necessity of introduction of a switch-function in an equation for fibrin-polymer formation kinetics. Consequent polymerization events can correspond to experimental systems where fibrin mesh formed gets withdrawn from the volume by some physical process like precipitation. The sensitivity analysis of presented system shows that dependence on the first stage polymerization reaction constant is non-trivial.

    Просмотров за год: 8.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.