Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'mathematical simulation':
Найдено статей: 132
  1. Грачев В.А., Найштут Ю.С.
    Задачи устойчивости тонких упругих оболочек
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 775-787

    В работе рассматриваются различные математические постановки, относящиеся к задаче упругой устойчивости оболочек в связи с обнаруженными в последнее время несоответствиями между экспериментальными данными и предсказаниями, основанными на теории пологих оболочек. Отмечается, что противоречия возникли в связи с появлением новых алгоритмов, позволивших уточнить вычисленные в двадцатом веке так называемые нижние критические напряжения, которые приняты техническими стандартами в качестве критерия глобальной потери устойчивости тонких пологих оболочек. Новые вычисления часто оценивают нижнее критическое напряжение близким к нулю. Следовательно, нижнее критическое напряжение не может приниматься в качестве расчетного значения для анализа потери устойчивости тонкостенной конструкции, а уравнения теории пологих оболочек должны быть заменены другими дифференциальными уравнениями. В новой теории следует также определить критерий потери устойчивости, обеспечивающий совпадение вычислений и экспериментов.

    В работе показано, что в рамках динамической нелинейной трехмерной теории упругости противоречие с новыми экспериментами может быть устранено. В качестве критерия глобальной потери устойчивости следует принять напряжение, при котором имеет место бифуркация динамических мод. Нелинейный характер исходных уравнений порождает уединенные (солитонные) волны, которым соответствуют негладкие перемещения оболочек (патерны, вмятины). Существенно, что влияния солитонов проявляются на всех этапах нагружения и резко возрастают, приближаясь к бифуркации. Солитонные решения иллюстрируются на примере тонкой цилиндрической безмоментной оболочки, трехмерный объем которой моделируется двумерной поверхностью с заданной толщиной. В статье отмечается, что волны, формирующие патерны, могут быть обнаружены (а их амплитуды определены) путем акустических или электромагнитных измерений.

    Таким образом, появляется техническая возможность снизить риск разрушения оболочек, если проводить мониторинг формы поверхности современными акустическими средствами. Статья завершается формулировкой математических проблем, требующих решения для надежной численной оценки критерия потери устойчивости тонких упругих оболочек.

    Grachev V.A., Nayshtut Yu.S.
    Buckling problems of thin elastic shells
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 775-787

    The article covers several mathematical problems relating to elastic stability of thin shells in view of inconsistencies that have been recently identified between the experimental data and the predictions based on the shallow- shell theory. It is highlighted that the contradictions were caused by new algorithms that enabled updating the values of the so called “low critical stresses” calculated in the 20th century and adopted as a buckling criterion for thin shallow shells by technical standards. The new calculations often find the low critical stress close to zero. Therefore, the low critical stress cannot be used as a safety factor for the buckling analysis of the thinwalled structure, and the equations of the shallow-shell theory need to be replaced with other differential equations. The new theory also requires a buckling criterion ensuring the match between calculations and experimental data.

    The article demonstrates that the contradiction with the new experiments can be resolved within the dynamic nonlinear three-dimensional theory of elasticity. The stress when bifurcation of dynamic modes occurs shall be taken as a buckling criterion. The nonlinear form of original equations causes solitary (solitonic) waves that match non-smooth displacements (patterns, dents) of the shells. It is essential that the solitons make an impact at all stages of loading and significantly increase closer to bifurcation. The solitonic solutions are illustrated based on the thin cylindrical momentless shell when its three-dimensional volume is simulated with twodimensional surface of the set thickness. It is noted that the pattern-generating waves can be detected (and their amplitudes can by identified) with acoustic or electromagnetic devices.

    Thus, it is technically possible to reduce the risk of failure of the thin shells by monitoring the shape of the surface with acoustic devices. The article concludes with a setting of the mathematical problems requiring the solution for the reliable numerical assessment of the buckling criterion for thin elastic shells.

    Просмотров за год: 23.
  2. В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.

    Madera A.G.
    Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630

    A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.

    Просмотров за год: 3.
  3. Петров И.Б.
    Application of the grid-characteristic method for mathematical modeling in dynamical problems of deformable solid mechanics
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1041-1048

    The grid-characteristic method is a promising numerical method for solving hyperbolic systems of equations, e.g., equations describing elastic and acoustic waves. This method has high precision and allows physically correct simulations of wave processes in heterogeneous media. The grid-characteristic method makes it possible to correctly take into account boundary conditions and conditions on surfaces with different physical characteristics. The method offers the greatest advantages for one-dimensional equations, especially in combination with a fixed difference grid, as in conventional grid-based methods. However, in the multidimensional case using the algorithms of splitting with respect to spatial variables, the author has managed to preserve its positive qualities. The use of the method of Runge–Kutta type, or the integro-interpolation method for hyperbolic equations makes it possible to effectively carry out a generalization of methods developed for linear equations, in the nonlinear case, in particular, to enforce the difference analogs of the conservation laws, which is important for shock-capturing, for example, discontinuous solutions. Based on the author’s variant of the grid-characteristic method, several important problems of seismic prospecting, seismic resistance, global seismic studies on Earth and Mars, medical applications, nondestructive testing of railway lines, the simulation of the creation and characteristics of composite materials for the aerospace industry and other areas of practical application were numerically solved. A significant advantage of the constructed method is the preservation of its stability and precision at the strains of the environment. This article presents the results of a numerical solution based on the grid-characteristic method to the problem of modeling elastic-plastic deformation in traumatic brain injury.

  4. Кащенко Н.М., Ишанов С.А., Зинин Л.В., Мациевский С.В.
    Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58

    Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.

    Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.

    Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.

    Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.

    При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.

    Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.

    Результаты численных экспериментов позволяют сделать следующие выводы.

    1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.

    2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.

    3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.

    4. Гладкий ограничитель F показал результаты, аналогичные Koren.

    5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.

    6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.

    7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.

    Kashchenko N.M., Ishanov S.A., Zinin L.V., Matsievsky S.V.
    A numerical method for solving two-dimensional convection equation based on the monotonized Z-scheme for Earth ionosphere simulation
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 43-58

    The purpose of the paper is a research of a 2nd order finite difference scheme based on the Z-scheme. This research is the numerical solution of several two-dimensional differential equations simulated the incompressible medium convection.

    One of real tasks for similar equations solution is the numerical simulating of strongly non-stationary midscale processes in the Earth ionosphere. Because convection processes in ionospheric plasma are controlled by magnetic field, the plasma incompressibility condition is supposed across the magnetic field. For the same reason, there can be rather high velocities of heat and mass convection along the magnetic field.

    Ionospheric simulation relevant task is the research of plasma instability of various scales which started in polar and equatorial regions first of all. At the same time the mid-scale irregularities having characteristic sizes 1–50 km create conditions for development of the small-scale instabilities. The last lead to the F-spread phenomenon which significantly influences the accuracy of positioning satellite systems work and also other space and ground-based radio-electronic systems.

    The difference schemes used for simultaneous simulating of such multi-scale processes must to have high resolution. Besides, these difference schemes must to be high resolution on the one hand and monotonic on the other hand. The fact that instabilities strengthen errors of difference schemes, especially they strengthen errors of dispersion type is the reason of such contradictory requirements. The similar swing of errors usually results to nonphysical results at the numerical solution.

    At the numerical solution of three-dimensional mathematical models of ionospheric plasma are used the following scheme of splitting on physical processes: the first step of splitting carries out convection along, the second step of splitting carries out convection across. The 2nd order finite difference scheme investigated in the paper solves approximately convection across equations. This scheme is constructed by a monotonized nonlinear procedure on base of the Z-scheme which is one of 2nd order schemes. At this monotonized procedure a nonlinear correction with so-called “oblique differences” is used. “Oblique differences” contain the grid nodes relating to different layers of time.

    The researches were conducted for two cases. In the simulating field components of the convection vector had: 1) the constant sign; 2) the variable sign. Dissipative and dispersive characteristics of the scheme for different types of the limiting functions are in number received.

    The results of the numerical experiments allow to draw the following conclusions.

    1. For the discontinuous initial profile the best properties were shown by the SuperBee limiter.

    2. For the continuous initial profile with the big spatial steps the SuperBee limiter is better, and at the small steps the Koren limiter is better.

    3. For the smooth initial profile the best results were shown by the Koren limiter.

    4. The smooth F limiter showed the results similar to Koren limiter.

    5. Limiters of different type leave dispersive errors, at the same time dependences of dispersive errors on the scheme parameters have big variability and depend on the scheme parameters difficulty.

    6. The monotony of the considered differential scheme is in number confirmed in all calculations. The property of variation non-increase for all specified functions limiters is in number confirmed for the onedimensional equation.

    7. The constructed differential scheme at the steps on time which are not exceeding the Courant's step is monotonous and shows good exactness characteristics for different types solutions. At excess of the Courant's step the scheme remains steady, but becomes unsuitable for instability problems as monotony conditions not satisfied in this case.

  5. Ступицкий Е.Л., Андрущенко В.А.
    Физические исследования, численное и аналитическое моделирование взрывных явлений. Обзор
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 505-546

    В данном обзоре рассмотрен широкий круг явлений и задач, связанных с взрывом. Подробные численные исследования позволили обнаружить интересный физический эффект — образование дискретных вихревых структур сразу за фронтом ударной волны, распространяющейся в плотных слоях неоднородной атмосферы. Показана необходимость дальнейшего исследования такого рода явлений и определения степени их связи с возможным развитием газодинамической неустойчивости. Дан краткий анализ многочисленных работ по тепловому взрыву метеороидов при их высокоскоростном движении в атмосфере Земли. Большое внимание уделено разработке численного алгоритма для расчета одновременного взрыва нескольких фрагментов метеороидов и проанализированы особенности развития такого газодинамического течения. Показано, что разработанные раннее алгоритмы для расчета взрывов могут успешно использоваться для исследования взрывных вулканических извержений. В работе представлены и обсуждаются результаты таких исследований как для континентальных, так и для подводных вулканов с определенными ограничениями на условия вулканической активности.

    В работе выполнен математический анализ и представлены результаты аналитических исследований ряда важных физических явлений, характерных для взрывов высокой удельной энергии в ионосфере. Показано, что принципиальное значение для разработки достаточно полных и адекватных теоретических и численных моделей таких сложных явлений, как мощные плазменные возмущения в ионосфере, имеет предварительное лабораторное физическое моделирование основных процессов, определяющих эти явления. Показано, что наиболее близким объектом для такого моделирования является лазерная плазма. Приведены результаты соответствующих теоретических и экспериментальных исследований и показана их научная и практическая значимость. Дан краткий обзор работ последних лет по использованию лазерного излучения для лабораторного физического моделирования процессов воздействия ядерного взрыва на астроидные материалы.

    В результате выполненного в обзоре анализа удалось выделить и предварительно сформулировать некоторые интересные и весомые в научном и прикладном отношении вопросы, которые необходимо исследовать на основе уже полученных представлений: это мелкодисперсные химически активные системы, образующиеся при выбросе вулканов; маломасштабные вихревые структуры; генерация спонтанных магнитных полей из-за развития неустойчивости и их роль в трансформации энергии плазмы при ее разлете в ионосфере. Важное значение имеет также вопрос об исследовании возможного лабораторного физического моделирования теплового взрыва тел при воздействии высокоскоростного плазменного потока, который до настоящего времени имеет лишь теоретические толкования.

    Stupitsky E.L., Andruschenko V.A.
    Physical research, numerical and analytical modeling of explosion phenomena. A review
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 505-546

    The review considers a wide range of phenomena and problems associated with the explosion. Detailed numerical studies revealed an interesting physical effect — the formation of discrete vortex structures directly behind the front of a shock wave propagating in dense layers of a heterogeneous atmosphere. The necessity of further investigation of such phenomena and the determination of the degree of their connection with the possible development of gas-dynamic instability is shown. The brief analysis of numerous works on the thermal explosion of meteoroids during their high-speed movement in the Earth’s atmosphere is given. Much attention is paid to the development of a numerical algorithm for calculating the simultaneous explosion of several fragments of meteoroids and the features of the development of such a gas-dynamic flow are analyzed. The work shows that earlier developed algorithms for calculating explosions can be successfully used to study explosive volcanic eruptions. The paper presents and discusses the results of such studies for both continental and underwater volcanoes with certain restrictions on the conditions of volcanic activity.

    The mathematical analysis is performed and the results of analytical studies of a number of important physical phenomena characteristic of explosions of high specific energy in the ionosphere are presented. It is shown that the preliminary laboratory physical modeling of the main processes that determine these phenomena is of fundamental importance for the development of sufficiently complete and adequate theoretical and numerical models of such complex phenomena as powerful plasma disturbances in the ionosphere. Laser plasma is the closest object for such a simulation. The results of the corresponding theoretical and experimental studies are presented and their scientific and practical significance is shown. The brief review of recent years on the use of laser radiation for laboratory physical modeling of the effects of a nuclear explosion on asteroid materials is given.

    As a result of the analysis performed in the review, it was possible to separate and preliminarily formulate some interesting and scientifically significant questions that must be investigated on the basis of the ideas already obtained. These are finely dispersed chemically active systems formed during the release of volcanoes; small-scale vortex structures; generation of spontaneous magnetic fields due to the development of instabilities and their role in the transformation of plasma energy during its expansion in the ionosphere. It is also important to study a possible laboratory physical simulation of the thermal explosion of bodies under the influence of highspeed plasma flow, which has only theoretical interpretations.

  6. Васенин И.М., Шрагер Э.Р., Крайнов А.Ю., Палеев Д.Ю., Лукашов О.Ю., Костеренко В.Н.
    Математическое моделирование нестационарных процессов вентиляции сети выработок угольной шахты
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 155-163

    Представлена математическая модель для расчета нестационарных процессов вентиляции сети выработок угольной шахты. Приведены результаты расчетов процесса вентиляции тупиковой выработки вентилятором местного проветривания и нестационарных аэродинамических процессов при реверсировании вентилятора главного проветривания в модельной сети выработок шахты.

    Vasenin I.M., Shrager E.R., Krainov A.Y., Paleev D.Y., Lukashev O.Y., Kosterenko V.N.
    Mathematical simulation of non-stationary ventilation processes of coal mining.
    Computer Research and Modeling, 2011, v. 3, no. 2, pp. 155-163

    Mathematical model of non-stationary ventilation processes of coal mining is presented. Numerical simulation of dead-end excavation ventilation processes using local ventilation fan and occurred non-stationary aerodynamic processes by reversing main ventilation fan in modeling of coal mining are presented in this study Poisson on circle and other areas.

    Цитирований: 12 (РИНЦ).
  7. Губанов С.М., Крайнов А.Ю.
    Численное моделирование охлаждения емкостей для десублимации паров
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 383-388

    Представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом, подаваемым к ним по сети трубопроводов. Приведены результаты расчетов процесса охлаждения двух приемных емкостей в блоке из четырех. Представлена картина течения охлаждающего воздуха в сети трубопроводов.

    Gubanov S.M., Krainov A.Y.
    Numerical simulation of cooling tanks for vapor desublimation processes
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 383-388

    The paper presents a mathematical model to be used for design of cooling tanks for vapor desublimation. Results of calculations for the process of cooling of two tanks in a block of four are presented. Chart of the cooling air flow in the piping network is presented.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  8. Заика Ю.В., Костикова Е.К.
    Моделирование термодесорбции и водородопроницаемости
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 679-703

    В контексте проблем водородной и термоядерной энергетики ведутся интенсивные исследования свойств изотопов водорода. Математические модели позволяют уточнять физико-химические представления о взаимодействии водорода с конструкционными материалами, выделять лимитирующие факторы. Классических моделей диффузии часто недостаточно. Статья посвящена моделям и численному решению краевых задач термодесорбции и водородопроницаемости с учетом динамики нелинейных сорбционно-десорбционных процессов на поверхности и обратимого захвата атомов водорода в объеме. Алгоритмы основаны на разностных аппроксимациях. Представлены результаты компьютерного моделирования потока водорода из конструкционного материала.

    Zaika Y.V., Kostikova E.K.
    Modeling of thermal desorption and hydrogen permeability
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 679-703

    In the context of problems of hydrogen and thermonuclear power engineering intensive research of the hydrogen isotopes properties is being conducted. Mathematical models help to specify physical-chemical ideas about the interaction of hydrogen isotopes with structural materials, to discover the limiting factors. Classical diffusion models are often insufficient. The paper is devoted to the models and numerical solution of the boundary-value problems of hydrogen thermodesorption and permeability taking into account nonlinear sorption-desorption dynamics on the surface and reversible capture of hydrogen atoms in the bulk. Algorithms based on difference approximations. The results of computer simulation of the hydrogen flux from a structural material sample are presented.

    Просмотров за год: 3.
  9. Дударов С.П., Диев А.Н., Федосова Н.А., Кольцова Э.М.
    Моделирование свойств конструкционного композитного материала, армированного углеродными нанотрубками, с использованием перцептронных комплексов
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 253-262

    Использование алгоритмов, основанных на нейронных сетях, может оказаться неэффективным при малых объемах экспериментальных данных. Авторы статьи рассматривают решение данной проблемы на примере моделирования свойств керамического композита, армированного углеродными нанотрубками, с помощью перцептронного комплекса. Такой подход позволил получить математическое описание объекта исследования при минимальном объеме и неполноте исходной информации, полученной в ходе экспериментов (объем необходимой экспериментальной выборки уменьшился в 2–3.3 раза). В статье рассмотрены различные варианты структур перцептронных комплексов. Выявлено, что наиболее подходящей структурой обладает перцептронный комплекс с проскоком двух входных переменных. Относительная ошибка составила всего 6%. Выбранный перцептронный комплекс показал свою эффективность для предсказания свойств керамического композита. Относительные ошибки по выходным компонентам составили 0.3%, 4.2%, 0.4%, 2.9% и 11.8%.

    Dudarov S.P., Diev A.N., Fedosova N.A., Koltsova E.M.
    Simulation of properties of composite materials reinforced by carbon nanotubes using perceptron complexes
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 253-262

    Use of algorithms based on neural networks can be inefficient for small amounts of experimental data. Authors consider a solution of this problem in the context of modelling of properties of ceramic composite materials reinforced with carbon nanotubes using perceptron complex. This approach allowed us to obtain a mathematical description of the object of study with a minimal amount of input data (the amount of necessary experimental samples decreased 2–3.3 times). Authors considered different versions of perceptron complex structures. They found that the most appropriate structure has perceptron complex with breakthrough of two input variables. The relative error was only 6%. The selected perceptron complex was shown to be effective for predicting the properties of ceramic composites. The relative errors for output components were 0.3%, 4.2%, 0.4%, 2.9%, and 11.8%.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  10. Башкирцева И.А., Бояршинова П.В., Рязанова Т.В., Ряшко Л.Б.
    Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660

    Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.

    Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B.
    Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660

    The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.

    Просмотров за год: 14. Цитирований: 4 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.