Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Об однозначности идентификации параметров скорости реакции в модели горения
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1469-1476Рассмотрена модель горения предварительно перемешанной смеси газов с одной глобальной химической реакцией, включающая в себя уравнения второго порядка относительно температуры смеси и концентраций топлива и окислителя, в правые части которых входит функция скорости реакции. Эта функция зависит от пяти неизвестных параметров глобальной реакции и служит приближением для многоступенчатого механизма реакций. Модель сводится к одному уравнению второго порядка относительно температуры смеси, которое после замены переменных преобразуется к уравнению первого порядка относительно производной температуры, зависящей от температуры, в которое входит параметр скорости распространения пламени. Таким образом, для вычисления параметра скорости распространения пламени необходимо решить задачу Дирихле для уравнения первого порядка, в результате чего получится модельная зависимость скорости распространения пламени от эквивалентного отношения смеси при заданных параметрах скорости реакции. При наличии экспериментальных данных зависимости скорости распространения пламени от эквивалентного отношения смеси ставится задача оптимального подбора параметров скорости реакции, исходя из минимизации среднеквадратичного отклонения модельных значений скорости распространения пламени от эксперимента. Целью работы является исследование однозначности решения этой задачи. Для этого применяется вычислительный эксперимент, в ходе которого решается задача глобального поиска оптимумов с помощью мультистарта градиентного спуска. В ходе вычислительного эксперимента выяснено, что обратная задача в такой постановке является недоопределенной, и всякий раз при запуске градиентного метода из новой точки получается новая предельная точка. Исследована структура множества предельных точек в пятимерном пространстве параметров и показано, что это множество может быть описано тремя линейными уравнениями. Таким образом, будет некорректным табулировать все пять параметров скорости реакции исходя из одного лишь критерия соответствия модели данным скорости распространения пламени. Вывод исследования заключается в том, что для корректного табулирования параметров необходимо указать значения двух из них исходя из дополнительных критериев оптимальности.
Ключевые слова: модель горения, обратная задача, метод наименьших квадратов, метод градиентного спуска, глобальная оптимизация.
On the uniqueness of identification of reaction rate parameters in a combustion model
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1469-1476A model of combustion of premixed mixture of gases with one global chemical reaction is considered, the model includes equations of the second order for temperature of mixture and concentrations of fuel and oxidizer, and the right-hand sides of these equations contain the reaction rate function. This function depends on five unknown parameters of the global reaction and serves as approximation to multistep reaction mechanism. The model is reduced, after replacement of variables, to one equation of the second order for temperature of mixture that transforms to a first-order equation for temperature derivative depending on temperature that contains a parameter of flame propagation velocity. Thus, for computing the parameter of burning velocity, one has to solve Dirichlet problem for first-order equation, and after that a model dependence of burning velocity on mixture equivalence ratio at specified reaction rate parameters will be obtained. Given the experimental data of dependence of burning velocity on mixture equivalence ratio, the problem of optimal selection of reaction rate parameters is stated, based on minimization of the mean square deviation of model values of burning velocity on experimental ones. The aim of our study is analysis of uniqueness of this problem solution. To this end, we apply computational experiment during which the problem of global search of optima is solved using multistart of gradient descent. The computational experiment clarifies that the inverse problem in this statement is underdetermined, and every time, when running gradient descent from a selected starting point, it converges to a new limit point. The structure of the set of limit points in the five-dimensional space is analyzed, and it is shown that this set can be described with three linear equations. Therefore, it might be incorrect to tabulate all five parameters of reaction rate based on just one match criterion between model and experimental data of flame propagation velocity. The conclusion of our study is that in order to tabulate reaction rate parameters correctly, it is necessary to specify the values of two of them, based on additional optimality criteria.
-
Идентификация модели объекта при наличии неизвестных возмущений с широким частотным диапазоном на основе перехода к приращениям сигналов и отбора данных
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 315-337Работа посвящена проблеме создания модели со стационарными параметрами по ретроспективным данным в условиях неизвестных возмущений. Рассматривается случай, когда представительная выборка состояний объекта может быть сформирована с использованием ретроспективных данных, накопленных только в течение значительного интервала времени. При этом допускается, что неизвестные возмущения могут действовать в широком частотном диапазоне и могут иметь низкочастотные и трендовые составляющие. В такой ситуации включение в выборку данных разных временных периодов может привести к противоречиям и чрезвычайно снизить точность модели. В работе дан обзор подходов и способов согласования данных. При этом основное внимание уделено отбору данных. Дана оценка применимости различных вариантов отбора данных как инструмента снижения уровня неопределенности. Предложен метод идентификации модели объекта с самовыравниванием по данным, накопленным за значительный период времени в условиях неизвестных возмущений с широким частотным диапазоном. Метод ориентирован на создание модели со стационарными параметрами, не требующей периодической перенастройки под новые условия. Метод основан на совместном применении отбора данных и представлении данных отдельных периодов времени в виде приращений относительно начального для периода момента времени. Это позволяет уменьшить число параметров, которые характеризуют неизвестные возмущения при минимуме допущений, ограничивающих применение метода. В результате снижается размерность поисковой задачи и минимизируются вычислительные затраты, связанные с настройкой модели. Рассмотрены особенности применения метода при нелинейной модели. Метод использован при разработке модели закрытого охлаждения стали на агрегате непрерывного горячего оцинковании стальной полосы. Модель может использоваться при упреждающем управлении тепловыми процессами и при выборе скорости движения полосы. Показано, что метод делает возможным разработку модели тепловых процессов с секции закрытого охлаждения в условиях неизвестных возмущений, имеющих в том числе низкочастотные составляющие.
Ключевые слова: идентификация, большие данные, глобальная модель, приращения, неизвестные воздействия, отбор данных.
Identification of an object model in the presence of unknown disturbances with a wide frequency range based on the transition to signal increments and data sampling
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 315-337The work is devoted to the problem of creating a model with stationary parameters using historical data under conditions of unknown disturbances. The case is considered when a representative sample of object states can be formed using historical data accumulated only over a significant period of time. It is assumed that unknown disturbances can act in a wide frequency range and may have low-frequency and trend components. In such a situation, including data from different time periods in the sample can lead to inconsistencies and greatly reduce the accuracy of the model. The paper provides an overview of approaches and methods for data harmonization. In this case, the main attention is paid to data sampling. An assessment is made of the applicability of various data sampling options as a tool for reducing the level of uncertainty. We propose a method for identifying a self-leveling object model using data accumulated over a significant period of time under conditions of unknown disturbances with a wide frequency range. The method is focused on creating a model with stationary parameters that does not require periodic reconfiguration to new conditions. The method is based on the combined use of sampling and presentation of data from individual periods of time in the form of increments relative to the initial point in time for the period. This makes it possible to reduce the number of parameters that characterize unknown disturbances with a minimum of assumptions that limit the application of the method. As a result, the dimensionality of the search problem is reduced and the computational costs associated with setting up the model are minimized. It is possible to configure both linear and, in some cases, nonlinear models. The method was used to develop a model of closed cooling of steel on a unit for continuous hot-dip galvanizing of steel strip. The model can be used for predictive control of thermal processes and for selecting strip speed. It is shown that the method makes it possible to develop a model of thermal processes from a closed cooling section under conditions of unknown disturbances, including low-frequency components.
-
Развитие неустойчивости границы раздела «вода – масло» в вертикальном электрическом поле
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 633-645Наличие контактной границы между водой и маслом сильно снижает электрическую прочность масляной фазы. Присутствие электрического поля приводит к различной степени поляризации на границе раздела и появлению силы, действующей на жидкость с большей диэлектрической проницаемостью (вода) в направлении жидкости с меньшей диэлектрической проницаемостью (масло), что приводит к развитию неустойчивости контактной поверхности. Неустойчивость в результате своего развития приводит к вытягиванию струйки воды в толщу масла и нарушению изоляционного промежутка.
В настоящей работе экспериментально и численно исследуется электрогидродинамическая неустойчивость на границе фаз «электропроводящая вода – трансформаторное масло» в сильно неоднородном электрическом поле, направленном перпендикулярно контактной границе. Представлены результаты натурного и численного эксперимента по исследованию развития электрогидродинамической неустойчивости в сильном электрическом поле на границе раздела воды и трансформаторного масла, приводящей к деформации этой границы жидкостей. Система состоит из шарообразного электрода радиусом 3,5 мм, помещенного в воду проводимостью 5 мкСм/см, и тонкого электрода-лезвия толщиной 0,1 мм, помещенного в трансформаторное масло марки ГК. Контактная граница проходит на одинаковом расстоянии от ближайших точек электродов, равном 3 мм. В работе показано, что при некоторой напряженности электрического поля происходит рост конусообразной структуры воды в сторону электрода, погруженного в трансформаторное масло. Численно получено соответствие как формы образующейся водной структуры (конуса) в течение всего времени роста, так и размера, отсчитываемого от ее вершины до уровня начальной контактной границы разделения фаз. Исследована динамика роста данной структуры. И в численном расчете, и в эксперименте обнаружено, что размер образующегося конуса вдоль линии соединения электродов линейно зависит от времени.
Ключевые слова: конус Тейлора, схема МакКормака, слабосжимаемые жидкости, диэлектрическая проницаемость.
Development of the water – oil interface instability in a vertical electric field
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 633-645The presence of a contact boundary between water and transformer oil greatly reduces the electrical strength of the oil phase. The presence of an electric field leads to varying degrees of polarization at the interface and the appearance of a force acting on a liquid with a higher dielectric constant (water) in the direction of a liquid with a lower dielectric constant (oil). This leads to the contact surface instability development. Instability as a result of its development leads to a stream of water being drawn into oil volume and a violation of the insulating gap. In this work, we experimentally and numerically study electrohydrodynamic instability at the phase boundary between electrically weakly conductive water and transformer oil in a highly inhomogeneous electric field directed perpendicular to the contact boundary. The results of a full-scale and numerical experiment of studying of the electrohydrodynamic instability development in a strong electric field at the interface between water and transformer oil are presented. The system consists of a spherical electrode with a radius of 3.5 mm, placed in water with a conductivity of 5 $\mu S/cm$, and a thin blade electrode 0.1 mm thick, placed in transformer oil of the GK brand. The contact boundary passes at the same distance from the nearest points of the electrodes, equal to 3 mm. The work shows that at a certain electric field strength, the cone-shaped structure of water grows towards the electrode immersed in transformer oil. A numerical correspondence was obtained for both the shape of the resulting water structure (cone) during the entire growth time and the size measured from its top to the level of the initial contact boundary of phase separation. The dynamics of this structure growth has been studied. Both in numerical calculations and in experiment, it was found that the size of the resulting cone along the electrode connection line depends linearly on time.
-
Математическое моделирование интервально стохастических тепловых процессов в технических системах при интервальной неопределенности определяющих параметров
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 501-520Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.
Ключевые слова: математическое моделирование, тепловой процесс, техническая система, интервальный, стохастический, нелинейный, нестационарный, статистические меры, математическое ожидание, дисперсия, ковариация.
Mathematical modeling of the interval stochastic thermal processes in technical systems at the interval indeterminacy of the determinative parameters
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 501-520Просмотров за год: 15. Цитирований: 6 (РИНЦ).The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.
-
Многослойная нейронная сеть для определения размеров наночастиц в задаче лазерной спектрометрии
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 265-273Решение задачи лазерной спектрометрии позволяет определять размеры частиц в растворе по спектру интенсивности рассеянного света. В результате эксперимента методом динамического рассеяния света получается кривая интенсивности рассеяния, по которой необходимо определить, частицы каких размеров представлены в растворе. Экспериментально полученный спектр интенсивности сравнивается с теоретически ожидаемым спектром, который является кривой Лоренца. Основная задача сводится к тому, чтобы на основании этих данных найти относительные концентрации частиц каждого сорта, представленных в растворе. В статье представлен способ построения и использования нейронной сети, обученной на синтетических данных, для определения размера частиц в растворе в диапазоне 1–500 нм. Нейронная сеть имеет полносвязный слой из 60 нейронов с функцией активации RELU на выходе, слой из 45 нейронов и с аналогичной функцией активации, слой dropout и 2 слоя с количеством нейронов 15 и 1 (выход сети). В статье описано, как сеть обучалась и тестировалась на синтетических и экспериментальных данных. На синтетических данных метрика «среднеквадратичное отклонение» (rmse) дала значение 1.3157 нм. Экспериментальные данные были получены для размеров частиц 200 нм, 400 нм и раствора с представителями обоих размеров. Сравниваются результаты работы нейронной сети и классических линейных методов, основанных на применении различных регуляризаций за счет введения дополнительных параметров и применяемых для определения размера частиц. К недостаткам классических методов можно отнести трудность автоматического определения степени регуляризации: слишком сильная регуляризация приводит к тому, что кривые распределения частиц по размерам сильно сглаживаются, а слабая регуляризация дает осциллирующие кривые и низкую надежность результатов. В работе показано, что нейронная сеть дает хорошее предсказание для частиц с большим размером. Для малых размеров предсказание хуже, но ошибка быстро уменьшается с увеличением размера.
A multilayer neural network for determination of particle size distribution in Dynamic Light Scattering problem
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 265-273Просмотров за год: 16.Solution of Dynamic Light Scattering problem makes it possible to determine particle size distribution (PSD) from the spectrum of the intensity of scattered light. As a result of experiment, an intensity curve is obtained. The experimentally obtained spectrum of intensity is compared with the theoretically expected spectrum, which is the Lorentzian line. The main task is to determine on the basis of these data the relative concentrations of particles of each class presented in the solution. The article presents a method for constructing and using a neural network trained on synthetic data to determine PSD in a solution in the range of 1–500 nm. The neural network has a fully connected layer of 60 neurons with the RELU activation function at the output, a layer of 45 neurons and the same activation function, a dropout layer and 2 layers with 15 and 1 neurons (network output). The article describes how the network has been trained and tested on synthetic and experimental data. On the synthetic data, the standard deviation metric (rmse) gave a value of 1.3157 nm. Experimental data were obtained for particle sizes of 200 nm, 400 nm and a solution with representatives of both sizes. The results of the neural network and the classical linear methods are compared. The disadvantages of the classical methods are that it is difficult to determine the degree of regularization: too much regularization leads to the particle size distribution curves are much smoothed out, and weak regularization gives oscillating curves and low reliability of the results. The paper shows that the neural network gives a good prediction for particles with a large size. For small sizes, the prediction is worse, but the error quickly decreases as the particle size increases.
-
Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1061-1067One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.
The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.
In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.
Ключевые слова: mathematical simulation, numerical method, grid-characteristic method, seismic waves, earthquake, seismic resistance.
Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.
The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.
In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.
-
Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.
В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.
Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.
In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.
-
О численном решении совместных обратных задач геофизики с использованием требования структурного подобия
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 329-343Решение обратных геофизических задач сложно в силу их математически некорректной постановки и большой вычислительной емкости. Геофизическая разведка малоизученных регионов, таких как шельф северных морей, дополнительно осложнена отсутствием надежных геологических данных. В этих условиях большое значение приобретают способы совместного использования информации, полученной различными геофизическими методами. Настоящая работа посвящена развитию подхода к совместной инверсии, основанного на требовании обращения в ноль определителя матрицы Грама для векторов параметров тех типов, которые используются в инверсии. В рамках этого подхода минимизируется нелинейный функционал, состоящий из суммы квадратов взвешенных невязок, суммы стабилизирующих функционалов и члена, отвечающего за наложение условия структурного подобия. Мы применяем этот подход к инверсии двух типов геофизических данных: сейсмики и электроразведки. Мы изучаем инверсию акустических данных совместно с низкочастотным электрическим полем с наложением требования структурного подобия на результирующие распределения скорости звука и электропроводности.
Рассмотрены постановка задачи обратной задачи и численный метод оптимизации. Нелинейная минимизация выполняется методом сопряженных градиентов. Эффективность разработанного подхода продемонстрирована на численном примере, в котором трехмерное распределение электропроводности считалось известным точно, а распределение скорости звука подбиралось путем решения соответствующей обратной задачи. Для численного эксперимента было использовано распределение скорости звука, построенное на основании упрощенных сейсмических горизонтов реального морского месторождения. Для этого распределения рассчитывались синтетические сейсмограммы, которые служили входными данными для алгоритма инверсии. Результирующее распределение скорости звука не только обеспечивало совпадение данных до заданной точности, но и было согласовано с заданным распределением электропроводности. На численных примерах продемонстрировано, что оптимально выбранный вес структурного ограничения может существенно улучшить детальность решения обратной задачи и позволяет восстановить особенности, которые иначе были бы не разрешены.
On numerical solution of joint inverse geophysical problems with structural constraints
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.
We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.
-
Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.
Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.
Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.
Ключевые слова: гибридный метод крупных частиц, регулирование диссипативных свойств, ударные волны, вихревая структура, неустойчивость на контактных границах.
Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.
The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.
Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.
-
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение.
Application of a hybrid large-particle method to the computation of the interaction of a shock wave with a gas suspension layer
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1323-1338For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.
On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.
The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"