Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'linear inequalities':
Найдено статей: 7
  1. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703

    Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.

    В данной работе этот алгоритм лежит в основе решения следующих задач.

    Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.

    Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.

    Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Newton methods
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703

    We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.

    In this paper, this algorithm is the basis for solving the following problems:

    Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.

    Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.

    Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.

    Просмотров за год: 7. Цитирований: 1 (РИНЦ).
  2. Лобанов А.И.
    Разностные схемы для уравнения переноса, удовлетворяющие обобщенному условию аппроксимации
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 181-193

    Cтроится семейство явных разностных схем на пятиточечном шаблоне для численного решения линейного уравнения переноса. Анализ свойств разностных схем проводится в пространстве неопределенных коэффициентов. Такие пространства впервые были введены в рассмотрение А. С. Холодовым. Для исследования свойств разностных схем ставилась задача линейного программирования. В качестве целевой функции обычно рассматривался коэффициент при главном члене невязки. Для построения монотонных разностных схем ставилась задача оптимизации с ограничениями типа неравенств. Ограниченность такого подхода становится ясной с учетом того, что аппроксимация разностной схемы определяется лишь на классических (гладких) решениях дифференциальной задачи.

    В соответствие разностной схеме ставится некоторый функционал, определяющий свойства разностной схемы. Функционал должен быть линейным по коэффициентам схемы. Возможно, что функционал зависит от сеточной функции — решения разностной задачи или проекции на сетку решения дифференциальной задачи. Если первые члены разложения в ряд Тейлора этого функционала по сеточным параметрам совпадут с условиями классической аппроксимации, такой функционал будем называть обобщенным условием аппроксимации. В статье показано, что такие функционалы существуют. Для линейного уравнения с постоянными коэффициентами построение такого функционала возможно и для обобщенного (негладкого) решения дифференциальной задачи.

    Построение разностной схемы с заданными свойствами тогда опирается на решение задачи поиска минимума функционала.

    Построены семейства функционалов как для гладких решений исходной дифференциальной задачи, так и для обобщенных решений. Построены новые разностные схемы, основанные на анализе функционалов методами линейного программирования. При этом использован аппарат исследования пары самодвойственных задач линейного программирования. Найдена оптимальная монотонная разностная схема, обладающая первым порядком аппроксимации на гладком решении. Обсуждается возможность применения построенных новых схем для построения гибридных разностных схем повышенного порядка аппроксимации на гладких решениях.

    Приводится пример численной реализации простейшей разностной схемы с обобщенной аппроксимацией.

    Lobanov A.I.
    Finite difference schemes for linear advection equation solving under generalized approximation condition
    Computer Research and Modeling, 2018, v. 10, no. 2, pp. 181-193

    A set of implicit difference schemes on the five-pointwise stensil is under construction. The analysis of properties of difference schemes is carried out in a space of undetermined coefficients. The spaces were introduced for the first time by A. S. Kholodov. Usually for properties of difference schemes investigation the problem of the linear programming was constructed. The coefficient at the main term of a discrepancy was considered as the target function. The optimization task with inequalities type restrictions was considered for construction of the monotonic difference schemes. The limitation of such an approach becomes clear taking into account that approximation of the difference scheme is defined only on the classical (smooth) solutions of partial differential equations.

    The functional which minimum will be found put in compliance to the difference scheme. The functional must be the linear on the difference schemes coefficients. It is possible that the functional depends on net function – the solution of a difference task or a grid projection of the differential problem solution. If the initial terms of the functional expansion in a Taylor series on grid parameters are equal to conditions of classical approximation, we will call that the functional will be the generalized condition of approximation. It is shown that such functionals exist. For the simple linear partial differential equation with constant coefficients construction of the functional is possible also for the generalized (non-smooth) solution of a differential problem.

    Families of functionals both for smooth solutions of an initial differential problem and for the generalized solution are constructed. The new difference schemes based on the analysis of the functionals by linear programming methods are constructed. At the same time the research of couple of self-dual problems of the linear programming is used. The optimum monotonic difference scheme possessing the first order of approximation on the smooth solution of differential problem is found. The possibility of application of the new schemes for creation of hybrid difference methods of the raised approximation order on smooth solutions is discussed.

    The example of numerical implementation of the simplest difference scheme with the generalized approximation is given.

    Просмотров за год: 27.
  3. Умнов А.Е., Умнов Е.А.
    Использование функций обратных связей для решения задач параметрического программирования
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1125-1151

    Рассматривается конечномерная оптимизационная задача, постановка которой, помимо искомых переменных, содержит параметры. Ее решение есть зависимость оптимальных значений переменных от параметров. В общем случае такие зависимости не являются функциями, поскольку могут быть неоднозначными, а в функциональном случае — быть недифференцируемыми. Кроме того, область их существования может оказаться уже области определения функций в условии задачи. Эти свойства затрудняют решение как исходной задачи, так и задач, в постановку которых входят данные зависимости. Для преодоления этих затруднений обычно применяются методы типа недифференцируемой оптимизации.

    В статье предлагается альтернативный подход, позволяющий получать решения параметрических задач в форме, лишенной указанных свойств. Показывается, что такие представления могут исследоваться стандартными алгоритмами, основанными на формуле Тейлора. Данная форма есть функция, гладко аппроксимирующая решение исходной задачи. При этом величина погрешности аппроксимации регулируется специальным параметром. Предлагаемые аппроксимации строятся с помощью специальных функций, устанавливающих обратные связи между переменными и множителями Лагранжа. Приводится краткое описание этого метода для линейных задач с последующим обобщением на нелинейный случай.

    Построение аппроксимации сводится к отысканию седловой точки модифицированной функции Лагранжа исходной задачи. Показывается, что необходимые условия существования такой седловой точки подобны условиям теоремы Каруша – Куна – Таккера, но не содержат в явном виде ограничений типа неравенств и условий дополняющей нежесткости. Эти необходимые условия аппроксимацию определяют неявным образом. Поэтому для вычисления ее дифференциальных характеристик используется теорема о неявных функциях. Эта же теорема применяется для уменьшения погрешности аппроксимации.

    Особенности практической реализации метода функций обратных связей, включая оценки скорости сходимости к точному решению, демонстрируются для нескольких конкретных классов параметрических оптимизационных задач. Конкретно: рассматриваются задачи поиска глобального экстремума функций многих переменных и задачи на кратный экстремум (максимин-минимакс). Также рассмотрены оптимизационные задачи, возникающие при использовании многокритериальных математических моделей. Для каждого из этих классов приводятся демонстрационные примеры.

    Umnov A.E., Umnov E.A.
    Using feedback functions to solve parametric programming problems
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1125-1151

    We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general, these dependencies are not functions because they can have ambiguous meanings and in the functional case be nondifferentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the condition of the original problem. All these properties make it difficult to solve both the original parametric problem and other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as non-differentiable optimization are used.

    This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms, based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special parameter. Construction of proposed approximations is performed using special functions that establish feedback (within optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for linear problems with subsequent generalization to the nonlinear case.

    From a computational point of view the construction of the approximation consists in finding the saddle point of the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the conditions of the Karush – Kuhn – Tucker theorem, but do not contain constraints such as inequalities and conditions of complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly. Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to reduce the approximation error to an acceptable level.

    Features of the practical implementation feedback function method, including estimates of the rate of convergence to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax) are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each of these classes, there are demo examples.

  4. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Krivovichev G.V.
    Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500

    Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  5. Минкевич И.Г.
    Неполные системы линейных уравнений с ограничениями на переменные
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 719-745

    Сформулирована задача описания объектов различной природы на основе системы линейных уравнений, в которой число неизвестных превосходит число уравнений. Важной особенностью такой задачи, существенно усложняющей ее решение, являются ограничения на значения ряда переменных. Примером такой задачи является выбор биохимических реакций, осуществляющих преобразование заданного субстрата (исходного вещества) в заданный продукт. В этом случае неизвестными являются скорости биохимических реакций, образующие искомый вектор решения. Компоненты этого вектора в описываемом подходе разделяются на две группы: 1) задаваемые, $\vec{y}$; 2) зависящие от задаваемых, $\vec{x}$. Изучены варианты конфигурации области допустимых значений $\vec{y}$, следующие из ограничений, наложенных на компоненты $\vec{x}$. Выявлено, что часть ограничений могут быть излишними и поэтому исключенными из рассмотрения, что упрощает решение задачи. Анализируются случаи, когда два или более ограничений на $\vec{x}$ приводят к появлению жестких связей между компонентами $\vec{y}$. Описаны методы поиска базисных решений, учитывающие особенности данной задачи. Постановка общей задачи и полученные решения проиллюстрированы биохимическим примером.

    Minkevich I.G.
    Incomplete systems of linear equations with restrictions of variable values
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 719-745

    The problem is formulated for description of objects having various natures which uses a system of linear equations with variable number exceeding the number of the equations. An important feature of this problem that substantially complicates its solving is the existing of restrictions imposed on a number of the variables. In particular, the choice of biochemical reaction aggregate that converts a preset substrate (a feedstock) into a preset product belongs to this kind of problems. In this case, unknown variables are the rates of biochemical reactions which form a vector to be determined. Components of this vector are subdivided into two groups: 1) the defined components, $\vec{y}$; 2) those dependent on the defined ones, $\vec{x}$. Possible configurations of the domain of $\vec{y}$ values permitted by restrictions imposed upon $\vec{x}$ components have been studied. It has been found that a part of restrictions may be superfluous and, therefore, unnecessary for the problem solving. Situations are analyzed when two or more $\vec{x}$ restrictions result in strict interconnections between $\vec{y}$ components. Methods of search of the basis solutions which take into account the peculiarities of this problem are described. Statement of the general problem and properties of its solutions are illustrated using a biochemical example.

    Просмотров за год: 24. Цитирований: 3 (РИНЦ).
  6. Остроухов П.А., Камалов Р.А., Двуреченский П.Е., Гасников А.В.
    Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376

    В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.

    Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.

    Ostroukhov P.A., Kamalov R.A., Dvurechensky P.E., Gasnikov A.V.
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376

    In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.

    For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.

    Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.

    Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.

  7. Поддубный В.В., Романович О.В.
    Математическое моделирование оптимального рынка конкурирующих товаров в условиях лага поставок
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 431-450

    Предлагается нелинейная рестриктивная (подчиняющаяся ограничениям типа неравенств) динамическая математическая модель свободного рынка многих товаров в условиях лага поставок товаров на рынок и линейной зависимости вектора спроса от вектора цен. Ставится задача отыскания оптимальных с точки зрения прибыли продавца цен и поставок товаров на рынок. Показано, что максимальная суммарная прибыль продавца выражается непрерывной кусочногладкой функцией вектора объемов поставок с разрывом производных на границах зон товарного дефицита, затоваривания и динамического равновесия рынка по каждому из товаров. С использованием аппарата предикатных функций построен вычислительный алгоритм оптимизации поставок товаров на рынок.

    Poddubny V.V., Romanovich O.V.
    Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450

    The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.