Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'цена':
Найдено статей: 33
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
  2. Профессору Дмитрию Сергеевичу Чернавскому — 90 лет
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 3-8
    Просмотров за год: 28.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Просмотров за год: 6.
  4. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  5. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
  6. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  7. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
  8. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  9. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  10. Зацерковный А.В., Нурминский Е.А.
    Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318

    Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.