Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'function minimization':
Найдено статей: 50
  1. Переварюха А.Ю.
    Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161

    Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.

    Perevarukha A.Y.
    Models of population process with delay and the scenario for adaptive resistance to invasion
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 147-161

    Changes in abundance for emerging populations can develop according to several dynamic scenarios. After rapid biological invasions, the time factor for the development of a reaction from the biotic environment will become important. There are two classic experiments known in history with different endings of the confrontation of biological species. In Gause’s experiments with ciliates, the infused predator, after brief oscillations, completely destroyed its resource, so its $r$-parameter became excessive for new conditions. Its own reproductive activity was not regulated by additional factors and, as a result, became critical for the invader. In the experiments of the entomologist Uchida with parasitic wasps and their prey beetles, all species coexisted. In a situation where a population with a high reproductive potential is regulated by several natural enemies, interesting dynamic effects can occur that have been observed in phytophages in an evergreen forest in Australia. The competing parasitic hymenoptera create a delayed regulation system for rapidly multiplying psyllid pests, where a rapid increase in the psyllid population is allowed until the pest reaches its maximum number. A short maximum is followed by a rapid decline in numbers, but minimization does not become critical for the population. The paper proposes a phenomenological model based on a differential equation with a delay, which describes a scenario of adaptive regulation for a population with a high reproductive potential with an active, but with a delayed reaction with a threshold regulation of exposure. It is shown that the complication of the regulation function of biotic resistance in the model leads to the stabilization of the dynamics after the passage of the minimum number by the rapidly breeding species. For a flexible system, transitional regimes of growth and crisis lead to the search for a new equilibrium in the evolutionary confrontation.

  2. Кольцов Ю.В., Бобошко Е.В.
    Сравнительный анализ методов оптимизации для решения задачи интервальной оценки потерь электроэнергии
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 231-239

    Данная работа посвящена сравнительному анализу оптимизационных методов и алгоритмов для проведения интервальной оценки технических потерь электроэнергии в распределительных сетях напряжением 6–20 кВ. Задача интервальной оценки потерь сформулирована в виде задачи многомерной условной минимизации/максимизации с неявной целевой функцией. Рассмотрен ряд методов численной оптимизации первого и нулевого порядков, с целью определения наиболее подходящего для решения рассмотренной проблемы. Таким является алгоритм BOBYQA, в котором целевая функция заменяется ее квадратичной аппроксимацией в пределах доверительной области.

    Koltsov Y.V., Boboshko E.V.
    Comparative analysis of optimization methods for electrical energy losses interval evaluation problem
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 231-239

    This article is dedicated to a comparison analysis of optimization methods, in order to perform an interval estimation of electrical energy technical losses in distribution networks of voltage 6–20 kV. The issue of interval evaluation is represented as a multi-dimensional conditional minimization/maximization problem with implicit target function. A number of numerical optimization methods of first and zero orders is observed, with the aim of determining the most suitable for the problem of interest. The desired algorithm is BOBYQA, in which the target function is replaced with its quadratic approximation in some trusted region.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  3. Скрипаленко М.Н., Скрипаленко М.М., Чан Ба Хюи , Ашихмин Д.А., Самусев С.В., Сидоров А.А.
    Определение с помощью вычислительной среды DEFORM-3D влияния вибраций рабочего валка на формирование толщины полосы при холодной прокатке
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 111-116

    Современные тенденции развития технического диагностирования связаны с применением вычислительных сред для компьютерного моделирования, позволяющих во многом заменить реальные эксперименты, снизить затраты на исследование и минимизировать риски. Компьютерное моделирование позволяет еще на этапе проектирования оборудования провести диагностирование с целью определения допустимых отклонений параметров работы технической установки. Особенностью диагностирования прокатного оборудования является то, что работа технологического агрегата непосредственно связана с формированием заданного качества получаемой металлопродукции, в том числе по точности. При этом важная роль отводится разработке методик технической диагностики и диагностического моделирования процессов прокатки и оборудования. Проведено компьютерное диагностическое моделирование процесса продольной холодной прокатки полосы с вибрацией рабочего валка в горизонтальной плоскости по известным данным экспериментальных исследований на непрерывном стане 1700. Вибрация рабочего валка в прокатной клети возникала вследствие зазора между подушкой валка и направляющей в станине и приводила к формированию периодической составляющей в отклонениях толщины полосы. По результатам моделирования с помощью вычислительной среды DEFORM-3D получили прокатанную полосу, которая имела продольную и поперечную разнотолщинность. Визуализация данных геометрических параметров полосы, полученных при моделировании, соответствовала виду неоднородностей поверхности реально прокатанной полосы. Дальнейший анализ разнотолщинности проводили с целью определения возможности идентификации по результатам моделирования источников периодических составляющих толщины полосы, причиной которых являются отклонения в работе оборудования, обусловленные его неисправностями или неправильной настройкой. Преимущество компьютерного моделирования при поиске источников образования разнотолщинности состоит в том, что можно проверить различные предположения по формированию толщины проката, не проводя реальных экспериментов и сократив таким образом временны́ е и материальные затраты, связанные с подготовкой и проведением экспериментов. Кроме того, при компьютерном моделировании толщина задаваемой полосы не будет иметь отклонений, что позволит рассматривать влияние на формирование толщины изучаемого источника без помех, связанных с наследственной разнотолщинностью, как это наблюдается в промышленных или лабораторных экспериментах. На основе спектрального анализа случайных процессов установлено, что в реализации толщины прокатанной полосы, полученной компьютерным моделированием процесса прокатки в одной клети при вибрации рабочего валка, содержится периодическая составляющая, имеющая частоту, равную заданной частоте колебаний рабочего валка. Результаты компьютерного моделирования согласуются с данными исследований на стане 1700. Таким образом, показана возможность применения компьютерного моделирования при поиске причин формирования разнотолщинности на промышленном прокатном оборудовании.

    Skripalenko M.N., Skripalenko M.M., Tran Ba Hui , Ashuhmin D.A., Samusev S.V., Sidorov A.A.
    Detection of influence of upper working roll’s vibrayion on thickness of sheet at cold rolling with the help of DEFORM-3D software
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 111-116

    Technical diagnosis’ current trends are connected to application of FEM computer simulation, which allows, to some extent, replace real experiments, reduce costs for investigation and minimize risks. Computer simulation, just at the stage of research and development, allows carrying out of diagnostics of equipment to detect permissible fluctuations of parameters of equipment’s work. Peculiarity of diagnosis of rolling equipment is that functioning of rolling equipment is directly tied with manufacturing of product with required quality, including accuracy. At that design of techniques of technical diagnosis and diagnostical modelling is very important. Computer simulation of cold rolling of strip was carried out. At that upper working roll was doing vibrations in horizontal direction according with published data of experiments on continuous 1700 rolling mill. Vibration of working roll in a stand appeared due to gap between roll’s craft and guide in a stand and led to periodical fluctuations of strip’s thickness. After computer simulation with the help of DEFORM software strip with longitudinal and transversal thickness variation was gotten. Visualization of strip’s geometrical parameters, according with simulation data, corresponded to type of inhomogeneity of surface of strip rolled in real. Further analysis of thickness variation was done in order to identify, on the basis of simulation, sources of periodical components of strip’s thickness, whose reasons are malfunctions of equipment. Advantage of computer simulation while searching the sources of forming of thickness variation is that different hypothesis concerning thickness formations may be tested without conducting real experiments and costs of different types may be reduced. Moreover, while simulation, initial strip’s thickness will not have fluctuations as opposed to industrial or laboratorial experiments. On the basis of spectral analysis of random process, it was established that frequency of changing of strip’s thickness after rolling in one stand coincides with frequency of working roll’s vibration. Results of computer simulation correlate with results of the researches for 1700 mill. Therefore, opportunity to apply computer simulation to find reasons of formation of thickness variation of strip on the industrial rolling mill is shown.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  4. Шумов В.В.
    Модель обоснования направлений сосредоточения усилий пограничной охраны на уровне государства
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 187-196

    Важнейшим принципом военной науки и пограничной безопасности является принцип сосредоточения основных усилий на главных направлениях и задачах. На тактическом уровне имеется множество математических моделей для вычисления оптимального распределения ресурса по направлениям и объектам, тогда как на уровне государства соответствующие модели отсутствуют. Используя статистические данные о результатах охраны границы США, вычислен параметр пограничной производственной функции экспоненциального типа, отражающий организационно-технологические возможности пограничной охраны. Производственная функция определяет зависимость вероятности задержания нарушителей от плотности пограничников на километр границы. Финансовые показатели в производственной функции не учитываются, поскольку бюджет на содержание пограничников и оборудование границы коррелирует с количеством пограничных агентов. Определена целевая функция пограничной охраны — суммарный предотвращенный ущерб от задержанных нарушителей с учетом их ожидаемой опасности для государства и общества, подлежащий максимизации. Используя условие Слейтера, найдено решение задачи — вычислены оптимальные плотности пограничной охраны по регионам государства. Имея модель распределения ресурсов, на примере трех пограничных регионов США решена и обратная задача — оценены угрозы в регионах по известному распределению ресурсов. Ожидаемая опасность от отдельного нарушителя на американо-канадской границе в 2–5 раз выше, чем от нарушителя на американо-мексиканской границе. Результаты расчетов соответствуют взглядам специалистов по безопасности США — на американо-мексиканской границе в основном задерживаются нелегальные мигранты, тогда как потенциальные террористы предпочитают использовать другие каналы проникновения в США (включая американо-канадскую границу), где риски быть задержанными минимальны. Также результаты расчетов соответствуют сложившейся практике охраны границы: в 2013 г. численность пограничников вне пунктов пропуска на американо-мексиканской границе увеличилась в 2 раза по сравнению с 2001 г., тогда как на американо-канадской границе — в 4 раза. Практика охраны границы и взгляды специалистов дают основания для утверждения о верификации модели.

    Shumov V.V.
    The model of the rationale for the focus of border security efforts at the state level
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 187-196

    The most important principle of military science and border security is the principle of concentrating the main efforts on the main directions and tasks. At the tactical level, there are many mathematical models for computing the optimal resource allocation by directions and objects, whereas at the state level there are no corresponding models. Using the statistical data on the results of the protection of the US border, an exponential type border production function parameter is calculated that reflects the organizational and technological capabilities of the border guard. The production function determines the dependence of the probability of detaining offenders from the density of border guards per kilometer of the border. Financial indicators in the production function are not taken into account, as the border maintenance budget and border equipment correlate with the number of border agents. The objective function of the border guards is defined — the total prevented damage from detained violators taking into account their expected danger for the state and society, which is to be maximized. Using Slater's condition, the solution of the problem was found — optimal density of border guard was calculated for the regions of the state. Having a model of resource allocation, the example of the three border regions of the United States has also solved the reverse problem — threats in the regions have been assessed based on the known allocation of resources. The expected danger from an individual offender on the US-Canada border is 2–5 times higher than from an offender on the US-Mexican border. The results of the calculations are consistent with the views of US security experts: illegal migrants are mostly detained on the US-Mexican border, while potential terrorists prefer to use other channels of penetration into the US (including the US-Canadian border), where the risks of being detained are minimal. Also, the results of the calculations are consistent with the established practice of border protection: in 2013 the number of border guards outside the checkpoints on the US-Mexican border increased by 2 times compared with 2001, while on the American-Canadian border — 4 times. The practice of border protection and the views of specialists give grounds for approval of the verification of the model.

    Просмотров за год: 26.
  5. Сабиров А.И., Катасёв А.С., Дагаева М.В.
    Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435

    В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.

    Sabirov A.I., Katasev A.S., Dagaeva M.V.
    A neural network model for traffic signs recognition in intelligent transport systems
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435

    This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.

  6. Остроухов П.А., Камалов Р.А., Двуреченский П.Е., Гасников А.В.
    Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376

    В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.

    Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.

    Ostroukhov P.A., Kamalov R.A., Dvurechensky P.E., Gasnikov A.V.
    Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376

    In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.

    For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.

    Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.

    Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.

  7. Косачева А.И.
    Влияние нерыночного преимущества на равновесие в модели Хотеллинга
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 573-581

    В работе исследуется модификация модели Хотеллинга, в которой одна из фирм обладает нерыночным преимуществом, введенным по аналогии с валентностью, используемой в задачах политической экономии. Нерыночное (валентное) преимущество может интерпретироваться как реклама (узнаваемость фирмы). Установлено, что при аддитивной функции полезности потребителей, зависящей квадратично от расстояния до фирмы, существует единственное равновесие по Нэшу. Это равновесие значительно «богаче» равновесия в исходной модели Хотеллинга. В частности, дополнительное нерыночное преимущество может быть избыточным и его использование — неэффективным.

    Kosacheva A.I.
    Impact of the non-market advantage on equilibrium in A Hotelling model
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 573-581

    The principle of minimal differentiation, based on the Hotelling model, is well known in the economy. It is applicable to horizontal differentiated goods of almost any nature. The Hotelling approach to modeling competition of oligopolies corresponds to a modern description of monopolistic competition with increasing returns to scale and imperfect competition. We develop a modification of the Hotelling model that endows a firm with a non-market advantage, which is introduced alike the valence advantage known in problems of political economy. The nonmarket (valence) advantage can be interpreted as advertisement (brand awareness of firms). Problem statement. Consider two firms competing with prices and location. Homogeneous consumers vary with its location on a segment. They minimize their costs, which additively includes the price of the product and the distance from them to the product. The utility function is linear with respect to the price and quadratic with respect to the distance. It is also expected that one of the firms (for certainty, firm № 1) has a market advantage d. The consumers are assumed to take into account the sum of the distance to the product and the market advantage of firm 1. Thus, the strategy of the firms and the consumers depend on two parameters: the unit t of the transport costs and the non-market advantage d. I explore characteristics of the equilibrium in the model as a function of the non-market advantage for different fixed t. The aim of the research is to assess the impact of the non-market advantage on the equlibrium. We prove that the Nash equilibrium exists and it is unique under additive consumers' preferences de-pending on the square of the distance between consumers and firms. This equilibrium is ‘richer’ than that in the original Hotelling model. In particular, non-market advantage can be excessive and inefficient to use.

  8. Заботин В.И., Чернышевский П.А.
    Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1111-1119

    The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.

    Zabotin, V.I., Chernyshevskij P.A.
    Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1111-1119

    The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.

  9. Остроухов П.А.
    Тензорные методы внутри смешанного оракула для решения задач типа min-min
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 377-398

    В данной статье рассматривается задача типа min-min: минимизация по двум группам переменных. Данная задача в чем-то похожа на седловую (min-max), однако лишена некоторых сложностей, присущих седловым задачам. Такого рода постановки могут возникать, если в задаче выпуклой оптимизации присутствуют переменные разных размерностей или если какие-то группы переменных определены на разных множествах. Подобная структурная особенность проблемы дает возможность разбивать ее на подзадачи, что позволяет решать всю задачу с помощью различных смешанных оракулов. Ранее в качестве возможных методов для решения внутренней или внешней задачи использовались только методы первого порядка или методы типа эллипсоидов. В нашей работе мы рассматриваем данный подход с точки зрения возможности применения алгоритмов высокого порядка (тензорных методов) для решения внутренней подзадачи. Для решения внешней подзадачи мы используем быстрый градиентный метод.

    Мы предполагаем, что внешняя подзадача определена на выпуклом компакте, в то время как для внутренней задачи мы отдельно рассматриваем задачу без ограничений и определенную на выпуклом компакте. В связи с тем, что тензорные методы по определению используют производные высокого порядка, время на выполнение одной итерации сильно зависит от размерности решаемой проблемы. Поэтому мы накладываем еще одно условие на внутреннюю подзадачу: ее размерность не должна превышать 1000. Для возможности использования смешанного оракула намнео бходимы некоторые дополнительные предположения. Во-первых, нужно, чтобы целевой функционал был выпуклымпо совокупности переменных и чтобы его градиент удовлетворял условию Липшица также по совокупности переменных. Во-вторых, нам необходимо, чтобы целевой функционал был сильно выпуклый по внутренней переменной и его градиент по внутренней переменной удовлетворял условию Липшица. Также для применения тензорного метода нам необходимо выполнение условия Липшица p-го порядка ($p > 1$). Наконец, мы предполагаем сильную выпуклость целевого функционала по внешней переменной, чтобы иметь возможность использовать быстрый градиентный метод для сильно выпуклых функций.

    Стоит отметить, что в качестве метода для решения внутренней подзадачи при отсутствии ограничений мы используем супербыстрый тензорный метод. При решении внутренней подзадачи на компакте используется ускоренный проксимальный тензорный метод для задачи с композитом.

    В конце статьи мы также сравниваем теоретические оценки сложности полученных алгоритмов с быстрым градиентным методом, который не учитывает структуру задачи и решает ее как обычную задачу выпуклой оптимизации (замечания 1 и 2).

    Ostroukhov P.A.
    Tensor methods inside mixed oracle for min-min problems
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 377-398

    In this article we consider min-min type of problems or minimization by two groups of variables. In some way it is similar to classic min-max saddle point problem. Although, saddle point problems are usually more difficult in some way. Min-min problems may occur in case if some groups of variables in convex optimization have different dimensions or if these groups have different domains. Such problem structure gives us an ability to split the main task to subproblems, and allows to tackle it with mixed oracles. However existing articles on this topic cover only zeroth and first order oracles, in our work we consider high-order tensor methods to solve inner problem and fast gradient method to solve outer problem.

    We assume, that outer problem is constrained to some convex compact set, and for the inner problem we consider both unconstrained case and being constrained to some convex compact set. By definition, tensor methods use high-order derivatives, so the time per single iteration of the method depends a lot on the dimensionality of the problem it solves. Therefore, we suggest, that the dimension of the inner problem variable is not greater than 1000. Additionally, we need some specific assumptions to be able to use mixed oracles. Firstly, we assume, that the objective is convex in both groups of variables and its gradient by both variables is Lipschitz continuous. Secondly, we assume the inner problem is strongly convex and its gradient is Lipschitz continuous. Also, since we are going to use tensor methods for inner problem, we need it to be p-th order Lipschitz continuous ($p > 1$). Finally, we assume strong convexity of the outer problem to be able to use fast gradient method for strongly convex functions.

    We need to emphasize, that we use superfast tensor method to tackle inner subproblem in unconstrained case. And when we solve inner problem on compact set, we use accelerated high-order composite proximal method.

    Additionally, in the end of the article we compare the theoretical complexity of obtained methods with regular gradient method, which solves the mentioned problem as regular convex optimization problem and doesn’t take into account its structure (Remarks 1 and 2).

  10. Стонякин Ф.С., Аблаев С.С., Баран И.В., Алкуса М.С.
    Субградиентные методы для слабо выпуклых и относительно слабо выпуклых задач с острым минимумом
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 393-412

    Работа посвящена исследованию субградиентных методов с различными вариациями шага Б.Т. Поляка на классах задач минимизации слабо выпуклых и относительно слабо выпуклых функций, обладающих соответствующим аналогом острого минимума. Оказывается, что при некоторых предположениях о начальной точке такой подход может давать возможность обосновать сходимость сyбградиентного метода со скоростью геометрической прогрессии. Для субградиентного метода с шагом Б.Т. Поляка доказана уточненная оценка скорости сходимости для задач минимизации слабо выпуклых функций с острым минимумом. Особенность этой оценки — дополнительный учет сокращения расстояния от текущей точки метода до множества решений по мере роста количества итераций. Представлены результаты численных экспериментов для задачи восстановления фазы (которая слабо выпyкла и имеет острый минимyм), демонстрирующие эффективность предложенного подхода к оценке скорости сходимости по сравнению с известным ранее результатом. Далее, предложена вариация субградиентного метода с переключениями по продуктивным и непродуктивным шагам для слабо выпуклых задач с ограничениями-неравенствами и получен некоторый аналог результата о сходимости со скоростью геометрической прогрессии. Для субградиентного метода с соответствующей вариацией шага Б.Т. Поляка на классе относительно липшицевых и относительно слабо выпуклых функций с относительным аналогом острого минимума получены условия, которые гарантируют сходимость такого субградиентного метода со скоростью геометрической прогрессии. Наконец, получен теоретический результат, описывающий влияние погрешности доступной сyбградиентномy методу информации о (сyб)градиенте и целевой функции на оценку качества выдаваемого приближенного решения. Доказано, что при достаточно малой погрешности $\delta > 0$ можно гарантировать достижение точности решения, сопоставимой c $\delta$.

    Stonyakin F.S., Ablaev S.S., Baran I.V., Alkousa M.S.
    Subgradient methods for weakly convex and relatively weakly convex problems with a sharp minimum
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 393-412

    The work is devoted to the study of subgradient methods with different variations of the Polyak stepsize for minimization functions from the class of weakly convex and relatively weakly convex functions that have the corresponding analogue of a sharp minimum. It turns out that, under certain assumptions about the starting point, such an approach can make it possible to justify the convergence of the subgradient method with the speed of a geometric progression. For the subgradient method with the Polyak stepsize, a refined estimate for the rate of convergence is proved for minimization problems for weakly convex functions with a sharp minimum. The feature of this estimate is an additional consideration of the decrease of the distance from the current point of the method to the set of solutions with the increase in the number of iterations. The results of numerical experiments for the phase reconstruction problem (which is weakly convex and has a sharp minimum) are presented, demonstrating the effectiveness of the proposed approach to estimating the rate of convergence compared to the known one. Next, we propose a variation of the subgradient method with switching over productive and non-productive steps for weakly convex problems with inequality constraints and obtain the corresponding analog of the result on convergence with the rate of geometric progression. For the subgradient method with the corresponding variation of the Polyak stepsize on the class of relatively Lipschitz and relatively weakly convex functions with a relative analogue of a sharp minimum, it was obtained conditions that guarantee the convergence of such a subgradient method at the rate of a geometric progression. Finally, a theoretical result is obtained that describes the influence of the error of the information about the (sub)gradient available by the subgradient method and the objective function on the estimation of the quality of the obtained approximate solution. It is proved that for a sufficiently small error $\delta > 0$, one can guarantee that the accuracy of the solution is comparable to $\delta$.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.