Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'finite-difference method':
Найдено статей: 76
  1. Петров И.Б.
    Application of the grid-characteristic method for mathematical modeling in dynamical problems of deformable solid mechanics
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1041-1048

    The grid-characteristic method is a promising numerical method for solving hyperbolic systems of equations, e.g., equations describing elastic and acoustic waves. This method has high precision and allows physically correct simulations of wave processes in heterogeneous media. The grid-characteristic method makes it possible to correctly take into account boundary conditions and conditions on surfaces with different physical characteristics. The method offers the greatest advantages for one-dimensional equations, especially in combination with a fixed difference grid, as in conventional grid-based methods. However, in the multidimensional case using the algorithms of splitting with respect to spatial variables, the author has managed to preserve its positive qualities. The use of the method of Runge–Kutta type, or the integro-interpolation method for hyperbolic equations makes it possible to effectively carry out a generalization of methods developed for linear equations, in the nonlinear case, in particular, to enforce the difference analogs of the conservation laws, which is important for shock-capturing, for example, discontinuous solutions. Based on the author’s variant of the grid-characteristic method, several important problems of seismic prospecting, seismic resistance, global seismic studies on Earth and Mars, medical applications, nondestructive testing of railway lines, the simulation of the creation and characteristics of composite materials for the aerospace industry and other areas of practical application were numerically solved. A significant advantage of the constructed method is the preservation of its stability and precision at the strains of the environment. This article presents the results of a numerical solution based on the grid-characteristic method to the problem of modeling elastic-plastic deformation in traumatic brain injury.

  2. Кащенко Н.М., Ишанов С.А., Зинин Л.В., Мациевский С.В.
    Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58

    Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.

    Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.

    Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.

    Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.

    При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.

    Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.

    Результаты численных экспериментов позволяют сделать следующие выводы.

    1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.

    2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.

    3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.

    4. Гладкий ограничитель F показал результаты, аналогичные Koren.

    5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.

    6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.

    7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.

    Kashchenko N.M., Ishanov S.A., Zinin L.V., Matsievsky S.V.
    A numerical method for solving two-dimensional convection equation based on the monotonized Z-scheme for Earth ionosphere simulation
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 43-58

    The purpose of the paper is a research of a 2nd order finite difference scheme based on the Z-scheme. This research is the numerical solution of several two-dimensional differential equations simulated the incompressible medium convection.

    One of real tasks for similar equations solution is the numerical simulating of strongly non-stationary midscale processes in the Earth ionosphere. Because convection processes in ionospheric plasma are controlled by magnetic field, the plasma incompressibility condition is supposed across the magnetic field. For the same reason, there can be rather high velocities of heat and mass convection along the magnetic field.

    Ionospheric simulation relevant task is the research of plasma instability of various scales which started in polar and equatorial regions first of all. At the same time the mid-scale irregularities having characteristic sizes 1–50 km create conditions for development of the small-scale instabilities. The last lead to the F-spread phenomenon which significantly influences the accuracy of positioning satellite systems work and also other space and ground-based radio-electronic systems.

    The difference schemes used for simultaneous simulating of such multi-scale processes must to have high resolution. Besides, these difference schemes must to be high resolution on the one hand and monotonic on the other hand. The fact that instabilities strengthen errors of difference schemes, especially they strengthen errors of dispersion type is the reason of such contradictory requirements. The similar swing of errors usually results to nonphysical results at the numerical solution.

    At the numerical solution of three-dimensional mathematical models of ionospheric plasma are used the following scheme of splitting on physical processes: the first step of splitting carries out convection along, the second step of splitting carries out convection across. The 2nd order finite difference scheme investigated in the paper solves approximately convection across equations. This scheme is constructed by a monotonized nonlinear procedure on base of the Z-scheme which is one of 2nd order schemes. At this monotonized procedure a nonlinear correction with so-called “oblique differences” is used. “Oblique differences” contain the grid nodes relating to different layers of time.

    The researches were conducted for two cases. In the simulating field components of the convection vector had: 1) the constant sign; 2) the variable sign. Dissipative and dispersive characteristics of the scheme for different types of the limiting functions are in number received.

    The results of the numerical experiments allow to draw the following conclusions.

    1. For the discontinuous initial profile the best properties were shown by the SuperBee limiter.

    2. For the continuous initial profile with the big spatial steps the SuperBee limiter is better, and at the small steps the Koren limiter is better.

    3. For the smooth initial profile the best results were shown by the Koren limiter.

    4. The smooth F limiter showed the results similar to Koren limiter.

    5. Limiters of different type leave dispersive errors, at the same time dependences of dispersive errors on the scheme parameters have big variability and depend on the scheme parameters difficulty.

    6. The monotony of the considered differential scheme is in number confirmed in all calculations. The property of variation non-increase for all specified functions limiters is in number confirmed for the onedimensional equation.

    7. The constructed differential scheme at the steps on time which are not exceeding the Courant's step is monotonous and shows good exactness characteristics for different types solutions. At excess of the Courant's step the scheme remains steady, but becomes unsuitable for instability problems as monotony conditions not satisfied in this case.

  3. Базарова А.И., Безносиков А.Н., Гасников А.В.
    Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255

    Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.

    В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.

    Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.

    Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.

    Bazarova A.I., Beznosikov A.N., Gasnikov A.V.
    Linearly convergent gradient-free methods for minimization of parabolic approximation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255

    Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.

    In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.

    In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.

    Experimental results confirm the efficiency and practical applicability of all the obtained methods.

  4. Описано развитие метода расщепления по физическим факторам для исследования течений несжимаемой жидкости (МЕРАНЖ), прошедшее за последние 50 лет. Гибридная явная конечно-разностная схема метода основана на модифицированной схеме с центральными разностями (МСЦР) и модифицированной схеме с ориентированными разностями (MСОР) со специальным условием переключения в зависимости от знака скорости переноса и знаков первой и второй разностей переносимых функций. Показано применение данного метода для решения некоторых задач (пространственный поток около сферы и кругового цилиндра для случаев однородной и стратифицированной жидкостей в широком диапазоне безразмерных параметров задачи, включая переходные режимы обтекания (2D–3D-переход, ламинарно-турбулентный переход в пограничном слое); плоскостная задача течения жидкости со свободной поверхностью; динамика вихревой пары в воде; коллапс пятен в стратифицированной жидкости; моделирование воздухо-, тепло- и массопереноса в «чистых производственных помещениях»).

    The development of the Splitting Method for Incompressible Fluid flows (SMIF) during last 50 years is described. The hybrid explicit finite difference scheme of method SMIF is based on Modified Central Difference Scheme (MCDS) and Modified Upwind Difference Scheme (MUDS) with special switch condition depending on the velocity sign and the signs of the first and second differences of transferred functions. Application of this method for solving of some tasks (the spatial flow around a sphere and a circular cylinder for homogeneous and stratified fluids in a wide range of dimensionless parameters of the problem, including the transitional regimes (2D–3D transition, laminar-turbulent transition in the boundary layer); a plane problem of fluid flows with a free surface; a dynamics of vortex pair in a water; a collapse of spots in stratified fluid; the air-, heat-, and mass transfer in «clean rooms») is demonstrated.

  5. Востриков Д.Д., Конин Г.О., Лобанов А.В., Матюхин В.В.
    Влияние конечности мантиссы на точность безградиентных методов оптимизации
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 259-280

    Безградиентные методы оптимизации, или методы нулевого порядка, широко применяются в обучении нейронных сетей, обучении с подкреплением, а также в промышленных задачах, где доступны лишь значения функции в точке (работа с неаналитическими функциями). В частности, метод обратного распространения ошибки в PyTorch работает именно по этому принципу. Существует общеизвестный факт, что при компьютерных вычислениях используется эвристика чисел с плавающей точкой, и из-за этого возникает проблема конечности мантиссы.

    В этой работе мы, во-первых, сделали обзор наиболее популярных методов аппроксимации градиента: конечная прямая/центральная разность (FFD/FCD), покомпонентная прямая/центральная разность (FWC/CWC), прямая/центральная рандомизация на $l_2$ сфере (FSSG2/CFFG2); во-вторых, мы описали текущие теоретические представления шума, вносимого неточностью вычисления функции в точке: враждебный шум, случайный шум; в-третьих, мы провели серию экспериментов на часто встречающихся классах задач, таких как квадратичная задача, логистическая регрессия, SVM, чтобы попытаться определить, соответствует ли реальная природа машинного шума существующей теории. Оказалось, что в реальности (по крайней мере на тех классах задач, которые были рассмотрены в данной работе) машинный шум оказался чем-то средним между враждебным шумом и случайным, в связи с чем текущая теория о влиянии конечности мантиссы на поиск оптимума в задачах безградиентной оптимизации требует некоторой корректировки.

    Vostrikov D.D., Konin G.O., Lobanov A.V., Matyukhin V.V.
    Influence of the mantissa finiteness on the accuracy of gradient-free optimization methods
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 259-280

    Gradient-free optimization methods or zeroth-order methods are widely used in training neural networks, reinforcement learning, as well as in industrial tasks where only the values of a function at a point are available (working with non-analytical functions). In particular, the method of error back propagation in PyTorch works exactly on this principle. There is a well-known fact that computer calculations use heuristics of floating-point numbers, and because of this, the problem of finiteness of the mantissa arises.

    In this paper, firstly, we reviewed the most popular methods of gradient approximation: Finite forward/central difference (FFD/FCD), Forward/Central wise component (FWC/CWC), Forward/Central randomization on $l_2$ sphere (FSSG2/CFFG2); secondly, we described current theoretical representations of the noise introduced by the inaccuracy of calculating the function at a point: adversarial noise, random noise; thirdly, we conducted a series of experiments on frequently encountered classes of problems, such as quadratic problem, logistic regression, SVM, to try to determine whether the real nature of machine noise corresponds to the existing theory. It turned out that in reality (at least for those classes of problems that were considered in this paper), machine noise turned out to be something between adversarial noise and random, and therefore the current theory about the influence of the mantissa limb on the search for the optimum in gradient-free optimization problems requires some adjustment.

  6. Самсонов К.Ю., Кабанов Д.К., Назаров В.Н., Екомасов Е.Г.
    Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868

    В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.

    Samsonov K.Y., Kabanov D.K., Nazarov V.N., Ekomasov E.G.
    Localized nonlinear waves of the sine-Gordon equation in a model with three extended impurities
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 855-868

    In this work, we use analytical and numerical methods to consider the problem of the structure and dynamics of coupled localized nonlinear waves in the sine-Gordon model with three identical attractive extended “impurities”, which are modeled by spatial inhomogeneity of the periodic potential. Two possible types of coupled nonlinear localized waves are found: breather and soliton. The influence of system parameters and initial conditions on the structure, amplitude, and frequency of localized waves was analyzed. Associated oscillations of localized waves of the breather type as in the case of point impurities, are the sum of three harmonic oscillations: in-phase, in-phase-antiphase and antiphase type. Frequency analysis of impurity-localized waves that were obtained during a numerical experiment was performed using discrete Fourier transform. To analyze localized breather-type waves, the numerical finite difference method was used. To carry out a qualitative analysis of the obtained numerical results, the problem was solved analytically for the case of small amplitudes of oscillations localized on impurities. It is shown that, for certain impurity parameters (depth and width), it is possible to obtain localized solitontype waves. The ranges of values of the system parameters in which localized waves of a certain type exist, as well as the region of transition from breather to soliton types of oscillations, have been found. The values of the depth and width of the impurity at which a transition from the breather to the soliton type of localized oscillations is observed were determined. Various scenarios of soliton-type oscillations with negative and positive amplitude values for all three impurities, as well as mixed cases, were obtained and considered. It is shown that in the case when the distance between impurities much less than one, there is no transition region where which the nascent breather, after losing energy through radiation, transforms into a soliton. It is shown that the considered model can be used, for example, to describe the dynamics of magnetization waves in multilayer magnets.

  7. Свириденко А.Б., Зеленков Г.А.
    Взаимосвязь и реализация квазиньютоновских и ньютоновских методов безусловной оптимизации
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 55-78

    Рассмотрены ньютоновские и квазиньютоновские методы безусловной оптимизации, основанные на факторизации Холесского, с регулировкой шага и с конечно-разностной аппроксимацией первых и вторых производных. Для увеличения эффективности квазиньютоновских методов предложено модифицированное разложение Холесского квазиньютоновской матрицы, определяющее и решение проблемы масштабирования шагов при спуске, и аппроксимацию неквадратичными функциями, и интеграцию с методом доверительной окрестности. Предложен подход к увеличению эффективности ньютоновских методов с конечно-разностной аппроксимацией первых и вторых производных. Приведены результаты численного исследования эффективности алгоритмов.

    Sviridenko A.B., Zelenkov G.A.
    Correlation and realization of quasi-Newton methods of absolute optimization
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 55-78

    Newton and quasi-Newton methods of absolute optimization based on Cholesky factorization with adaptive step and finite difference approximation of the first and the second derivatives. In order to raise effectiveness of the quasi-Newton methods a modified version of Cholesky decomposition of quasi-Newton matrix is suggested. It solves the problem of step scaling while descending, allows approximation by non-quadratic functions, and integration with confidential neighborhood method. An approach to raise Newton methods effectiveness with finite difference approximation of the first and second derivatives is offered. The results of numerical research of algorithm effectiveness are shown.

    Просмотров за год: 7. Цитирований: 5 (РИНЦ).
  8. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Krivovichev G.V.
    Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 485-500

    Stability of finite difference schemes of lattice Boltzmann method for modelling of 1D diffusion for cases of D1Q2 and D1Q3 lattices is investigated. Finite difference schemes are constructed for the system of linear Bhatnagar–Gross–Krook (BGK) kinetic equations on single particle distribution functions. Brief review of articles of other authors is realized. With application of multiscale expansion by Chapman–Enskog method it is demonstrated that system of BGK kinetic equations at small Knudsen number is transformated to scalar linear diffusion equation. The solution of linear diffusion equation is obtained as a sum of single particle distribution functions. The method of linear travelling wave propagation is used to show the unconditional asymptotic stability of the solution of Cauchy problem for the system of BGK equations at all values of relaxation time. Stability of the scheme for D1Q2 lattice is demonstrated by the method of differential approximation. Stability condition is written in form of the inequality on values of relaxation time. The possibility of the reduction of stability analysis of the schemes for BGK equations to the analysis of special schemes for diffusion equation for the case of D1Q3 lattice is investigated. Numerical stability investigation is realized by von Neumann method. Absolute values of the eigenvalues of the transition matrix are investigated in parameter space of the schemes. It is demonstrated that in wide range of the parameters changing the values of modulas of eigenvalues are lower than unity, so the scheme is stable with respect to initial conditions.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  9. Бабаков А.В., Чечёткин В.М.
    Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643

    Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.

    Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Просмотров за год: 27.
  10. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

    Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.