Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Подходы к интеграции облачных инфраструктур
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 583-590Одним из важных направлений развития облачных технологий на данный момент является разработка методов интеграции различных облачных инфраструктур. В научной сфере актуальность данного направления обусловлена в первую очередь часто возникающей проблемой нехватки собственных вычислительных ресурсов и необходимостью привлечения дополнительных мощностей. В данной статье рассматриваются существующие подходы к интеграции облачных инфраструктур между собой: федеративные объединения и так называемая модель cloud bursting. Федеративное объединение на базе облачной платформы OpenNebula строится по схеме «одна главная зона и несколько управляемых зон», где под «зоной» понимается каждая из инфраструктур федерации. В подобной интеграции все облачные инфраструктуры имеют единую базу пользователей, а управление всей федерацией осуществляется централизованно с главной зоны. Данная схема наиболее подходит для объединения территориально разнесенных облачных инфраструктур, например подразделений одной организации, но не подходит для объединения инфраструктур разных организаций ввиду присущего данному подходу централизованного управления, а в случае использования организациями разных облачных платформ — невозможна. Модель федеративного объединения, реализованная в европейской грид-инфраструктуре «EGI Federated Cloud», хотя и позволяет интегрировать между собой облачные инфраструктуры на базе разных платформ, однако для интеграции подобным способом требуются установка и настройка существенного дополнительного набора специфических для данной конкретной европейской грид-инфраструктуры сервисов, что лишает данный подход универсальности. Модель cloud bursting лишена ограничений перечисленных федеративных подходов, однако в случае OpenNebula, на базе которой построена облачная инфраструктура Лаборатории информационных технологий Объединенного института ядерных исследований (ЛИТ ОИЯИ), такая модель была реализована только для интеграции с фиксированным набором коммерческих поставщиков облачных ресурсов. С учетом этого, а также на основании полученного авторами статьи опыта как по объединению облачных инфраструктур представляемых ими организаций, так и интеграции с европейским облаком EGI Federated Cloud командой ЛИТ ОИЯИ был разработан драйвер для объединения облаков партнерских организаций по модели cloud bursting на базе платформы OpenNebula как с аналогичным, так и с облаками на базе OpenStack. В статье описывается архитектура этого драйвера, используемые в нем технологии и протоколы, а также опыт его применения для объединения облачных инфраструктур организаций из стран-участниц ОИЯИ.
Ключевые слова: облачные технологии, интеграция, EGI Federated Cloud, OpenNebula, OpenStack, cloud bursting.
Approaches to cloud infrastructures integration
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 583-590Просмотров за год: 6. Цитирований: 11 (РИНЦ).One of the important direction of cloud technologies development nowadays is a creation of methods for integration of various cloud infrastructures. An actuality of such direction in academic field is caused by a frequent lack of own computing resources and a necessity to attract additional ones. This article is dedicated to existing approaches to cloud infrastructures integration with each other: federations and so called ‘cloud bursting’. A ‘federation’ in terms of OpenNebula cloud platform is built on a ‘one master zone and several slave ones’ schema. A term ‘zone’ means a separate cloud infrastructure in the federation. All zones in such kind of integration have a common database of users and the whole federation is managed via master zone only. Such approach is most suitable for a case when cloud infrastructures of geographically distributed branches of a single organization need to be integrated. But due to its high centralization it's not appropriate when one needs to join cloud infrastructures of different organizations. Moreover it's not acceptable at all in case of clouds based on different software platforms. A model of federative integration implemented in EGI Federated Cloud allows to connect clouds based on different software platforms but it requires a deployment of sufficient amount of additional services which are specific for EGI Federated Cloud only. It makes such approach is one-purpose and uncommon one. A ‘cloud bursting’ model has no limitations listed above but in case of OpenNebula platform what the Laboratory of Information Technologies of Joint Institute for Nuclear Research (LIT JINR) cloud infrastructure is based on such model was implemented for an integration with a certain set of commercial cloud resources providers. Taking into account an article authors’ experience in joining clouds of organizations they represent as well as with EGI Federation Cloud a ‘cloud bursting’ driver was developed by LIT JINR cloud team for OpenNebula-based clouds integration with each other as well as with OpenStack-based ones. The driver's architecture, technologies and protocols it relies on and an experience of its usage are described in the article.
-
Особенности движения кинков ДНК при асинхронном включении/выключении постоянного и периодического полей
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 545-558Исследование влияния внешних полей на живые системы — одно их наиболее интересных и быстро развивающихся направлений современной биофизики. Однако механизмы такого воздействия до сих пор не совсем ясны. Один из подходов к изучению этого вопроса связывают с моделированием взаимодействия внешних полей с внутренней подвижностью биологических объектов. В настоящей работе этот подход применяется для исследования влияния внешних полей на движение локальных конформационных возмущений — кинков в молекуле ДНК. Понимая и учитывая, что в целом такая задача тесно связана с задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем, мы поставили задачу — исследовать физические механизмы, регулирующие движение кинков, а также ответить на вопрос, могут ли постоянные и периодические поля выступать в роли регуляторов этого движения. В работе рассматривается самый общий случай, когда постоянные и периодические поля включаются и выключаются асинхронно. Детально исследованы три варианта асинхронного включения/выключения. В первом варианте интервалы (или диапазоны) действия постоянного и периодического полей не перекрываются, во втором — перекрываются, а третьем — интервалы вложены друг в друга. Расчеты выполнялись для последовательности плазмиды pTTQ18. Движение кинков моделировалось уравнением МакЛафлина–Скотта, а коэффициенты этого уравнения рассчитывались в квазиоднородном приближении. Численные эксперименты показали, что постоянные и периодические поля оказывают существенное влияние на характер движения кинка и регулируют его. Так, включение постоянного поля приводит к быстрому увеличению скорости кинка и установлению стационарной скорости движения, а включение периодического поля приводит к установившимся колебаниям кинка с частотой внешнего периодического поля. Показано, что поведение кинка зависит от взаимного расположения диапазонов действия внешних полей. Причем, как оказалось, события, происходящие в одном диапазоне, могут оказывать влияние на события в другом временном диапазоне даже в том случае, когда диапазоны расположены достаточно далеко друг от друга. Показано, что перекрывание диапазонов действия постоянного и периодического полей приводит к значительному увеличению пути, проходимому кинком до полной остановки. Максимальный рост пути наблюдается в случае вложенных друг в друга диапазонов. В заключении обсуждается вопрос о том, как полученные модельные результаты могут быть связаны с важнейшей задачей биологии — задачей о механизмах регуляции процессов жизнедеятельности клеток и клеточных систем.
Ключевые слова: уравнение МакЛафлина–Скотта, кинки ДНК, действие внешних полей, асинхронное включение/выключение.
Features of the DNA kink motion in the asynchronous switching on and off of the constant and periodic fields
Computer Research and Modeling, 2018, v. 10, no. 4, pp. 545-558Просмотров за год: 29. Цитирований: 1 (РИНЦ).Investigation of the influence of external fields on living systems is one of the most interesting and rapidly developing areas of modern biophysics. However, the mechanisms of such an impact are still not entirely clear. One approach to the study of this issue is associated with modeling the interaction of external fields with internal mobility of biological objects. In this paper, this approach is used to study the effect of external fields on the motion of local conformational distortions — kinks, in the DNA molecule. Realizing and taking into account that on the whole this task is closely connected with the problem of the mechanisms of regulation of vital processes of cells and cellular systems, we set the problem — to investigate the physical mechanisms regulating the motion of kinks and also to answer the question whether permanent and periodic fields can play the role of regulators of this movement. The paper considers the most general case, when constant and periodic fields are switching on and off asynchronously. Three variants of asynchronous switching on/off are studied in detail. In the first variant, the time intervals (or diapasons) of the actions of the constant and periodic fields do not overlap, in the second — overlap, and in the third — the intervals are putting in each other. The calculations were performed for the sequence of plasmid pTTQ18. The kink motion was modeled by the McLaughlin–Scott equation, and the coefficients of the equation were calculated in a quasi-homogeneous approximation. Numerical experiments showed that constant and periodic fields exert a significant influence on the character of the kink motion and regulate it. So the switching on of a constant field leads to a rapid increase of the kink velocity and to the establishment of a stationary velocity of motion, and the switching on of a periodic field leads to the steady oscillations of the kink with the frequency of the external periodic field. It is shown that the behavior of the kink depends on the mutual arrangement of the diapasons of the action of the external fields. As it turned out, events occurring in one of the two diapasons can affect the events in the other diapason, even when the diapasons are sufficiently far apart. It is shown that the overlapping of the diapasons of action of the constant and periodic fields leads to a significant increase in the path traversed by the kink to a complete stop. Maximal growth of the path is observed when one diapason is putting in each other. In conclusion, the question of how the obtained model results could be related to the most important task of biology — the problem of the mechanisms of regulation of the processes of vital activity of cells and cellular systems is discussed.
-
Моделирование динамики численности занятого населения в отраслях экономики: агент-ориентированный подход
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 919-937Статья посвящена моделированию динамики численности занятого населения по отраслям экономики как на национальном, так и на региональном уровне. Отсутствие целевого распределения работников в рыночной экономике требует исследования системных процессов на рынке труда, приводящих к различной динамике численности занятых в отраслях экономики. В этом случае значимыми становятся личные стратегии выбора трудовой деятельности экономическими агентами. Наличие различных стратегий приводит к появлению страт на рынке труда с динамично изменяющейся численностью занятых, неравномерно распределенной между отраслями экономики. В результате этого могут наблюдаться нелинейные колебания численности занятого населения, для исследования которых релевантен инструментарий агент-ориентированного моделирования. В статье на примере Еврейской автономной области рассмотрены синхронные и противофазные колебания численности занятых по видам экономической деятельности, обнаруженные во временных рядах статистических данных для 2008–2016 гг. Показано, что такие колебания наблюдаются по возрастным группам работников. Ввиду этого выдвинута гипотеза о том, что агент на рынке труда при выборе места работы руководствуется стратегией, характерной для его возрастной группы, что в итоге прямо влияет на распределение численности занятых различных когорт и общую численность занятых в отраслях экономики. При этом стратегия определяется исходя из социально-экономических характеристик отраслей (различного уровня оплаты труда, условий труда, престижа профессии). Для проверки гипотезы построена базовая агент-ориентированная модель трехотраслевой экономики, в которой учтены различные стратегии экономических агентов, включающие выбор наибольшей заработной платы, наиболее высокого престижа профессии и наилучших условий труда. В результате численных экспериментов показано, что наличие различных стратегий выбора отрасли в совокупности с возрастными предпочтениями работодателей внутри отрасли приводит к периодическим и сложным режимам динамики численности разновозрастных занятых. Такие возрастные предпочтения могут быть вызваны, например, требованием работодателя к наличию трудового стажа и образования. Также сущетвенные изменения возрастной структуры занятого населения могут возникнуть вследствие миграции.
Ключевые слова: занятое население, отрасли экономики, агент-ориентированное моделирование, нелинейная динамика.
Modeling of population dynamics employed in the economic sectors: agent-oriented approach
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 919-937Просмотров за год: 34.The article deals with the modeling of the number of employed population by branches of the economy at the national and regional levels. The lack of targeted distribution of workers in a market economy requires the study of systemic processes in the labor market that lead to different dynamics of the number of employed in the sectors of the economy. In this case, personal strategies for choosing labor activity by economic agents become important. The presence of different strategies leads to the emergence of strata in the labor market with a dynamically changing number of employees, unevenly distributed among the sectors of the economy. As a result, non-linear fluctuations in the number of employed population can be observed, the toolkit of agentbased modeling is relevant for the study of the fluctuations. In the article, we examined in-phase and anti-phase fluctuations in the number of employees by economic activity on the example of the Jewish Autonomous Region in Russia. The fluctuations found in the time series of statistical data for 2008–2016. We show that such fluctuations appear by age groups of workers. In view of this, we put forward a hypothesis that the agent in the labor market chooses a place of work by a strategy, related with his age group. It directly affects the distribution of the number of employed for different cohorts and the total number of employed in the sectors of the economy. The agent determines the strategy taking into account the socio-economic characteristics of the branches of the economy (different levels of wages, working conditions, prestige of the profession). We construct a basic agentoriented model of a three-branch economy to test the hypothesis. The model takes into account various strategies of economic agents, including the choice of the highest wages, the highest prestige of the profession and the best working conditions by the agent. As a result of numerical experiments, we show that the availability of various industry selection strategies and the age preferences of employers within the industry lead to periodic and complex dynamics of the number of different-aged employees. Age preferences may be a consequence, for example, the requirements of employer for the existence of work experience and education. Also, significant changes in the age structure of the employed population may result from migration.
-
Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.
Ключевые слова: относительная сильная выпуклость, относительная гладкость, относительный функциональный рост, относительное условие градиентного доминирования, адаптивный метод, рестарты.
Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 413-432This paper is devoted to some variants of improving the convergence rate guarantees of the gradient-type algorithms for relatively smooth and relatively Lipschitz-continuous problems in the case of additional information about some analogues of the strong convexity of the objective function. We consider two classes of problems, namely, convex problems with a relative functional growth condition, and problems (generally, non-convex) with an analogue of the Polyak – Lojasiewicz gradient dominance condition with respect to Bregman divergence. For the first type of problems, we propose two restart schemes for the gradient type methods and justify theoretical estimates of the convergence of two algorithms with adaptively chosen parameters corresponding to the relative smoothness or Lipschitz property of the objective function. The first of these algorithms is simpler in terms of the stopping criterion from the iteration, but for this algorithm, the near-optimal computational guarantees are justified only on the class of relatively Lipschitz-continuous problems. The restart procedure of another algorithm, in its turn, allowed us to obtain more universal theoretical results. We proved a near-optimal estimate of the complexity on the class of convex relatively Lipschitz continuous problems with a functional growth condition. We also obtained linear convergence rate guarantees on the class of relatively smooth problems with a functional growth condition. For a class of problems with an analogue of the gradient dominance condition with respect to the Bregman divergence, estimates of the quality of the output solution were obtained using adaptively selected parameters. We also present the results of some computational experiments illustrating the performance of the methods for the second approach at the conclusion of the paper. As examples, we considered a linear inverse Poisson problem (minimizing the Kullback – Leibler divergence), its regularized version which allows guaranteeing a relative strong convexity of the objective function, as well as an example of a relatively smooth and relatively strongly convex problem. In particular, calculations show that a relatively strongly convex function may not satisfy the relative variant of the gradient dominance condition.
-
Разностные схемы расщепления для системы одномерных уравнений гемодинамики
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.
При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.
Difference splitting schemes for the system of one-dimensional equations of hemodynamics
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.
For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.
-
Моделирование динамики политических позиций: плотность сети и шансы меньшинства
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 785-796Некоторые информационные противоборства завершаются тем, что практически все общество принимает одну точку зрения, другие приводят к тому, что партия большинства получает лишь небольшой перевес над партией меньшинства. Возникает вопрос о том, какие сетевые характеристики общества способствуют тому, чтобы меньшинство могло сохранять некоторую значимую численность. С учетом того, что некоторые общества являются более связными, чем другие, в смысле того, что они имеют более высокую плотность социальных связей, данный вопрос конкретизируется следующим образом: какой эффект плотности социальных связей оказывается на шансы меньшинства сохранить не слишком малую численность? Способствует ли более высокая плотность более полной победе большинства или, наоборот, шансам меньшинства? Для изучения этого вопроса рассматривается информационное противоборство двух партий, называемых левой и правой, в населении, представленном в виде сети, узлами которой являются индивиды, а связи соответствуют их знакомству и описывают взаимное влияние. В каждый из дискретных моментов времени каждый индивид принимает решение о поддержке той или иной партии, основываясь на своей установке, т.е. предрасположенности к левой либо правой партии, и учитывая влияние своих соседей по сети. Влияние состоит в том, что каждый сосед с определенной вероятностью посылает данному индивиду сигнал в пользу той партии, которую сам в данный момент поддерживает. Если сосед меняет свою партийность, то он начинает агитировать данного индивида за свою «новую» партию. Такие процессы создают динамику, т.е. протяженное во времени изменение партийности индивидов. Продолжительность противоборства является экзогенно заданной, последний момент может быть условно ассоциирован с днем выборов. Изложенная модель численно реализована на безмасштабной сети. Проведены численные эксперименты для различных значений плотности сети. Ввиду наличия стохастических элементов в модели, для каждого значения плотности проведено 200 прогонов, для каждого из которых определена конечная численность сторонников каждой изпа ртий. Получено, что при увеличении плотности увеличиваются шансы того, что победившая точка зрения охватит практически все население. И наоборот, низкая плотность сети способствует шансам меньшинства сохранить значимую численность.
Ключевые слова: информационное противоборство, агентно-ориентированное моделирование, безмасштабные сети, плотность сети, эхо-камеры.
Modeling the dynamics of political positions: network density and the chances of minority
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 785-796In some cases, information warfare results in almost whole population accepting one of two contesting points of view and rejecting the other. In other cases, however, the “majority party” gets only a small advantage over the “minority party”. The relevant question is which network characteristics of a population contribute to the minority being able to maintain some significant numbers. Given that some societies are more connected than others, in the sense that they have a higher density of social ties, this question is specified as follows: how does the density of social ties affect the chances of a minority to maintain a significant number? Does a higher density contribute to a landslide victory of majority, or to resistance of minority? To address this issue, we consider information warfare between two parties, called the Left and the Right, in the population, which is represented as a network, the nodes of which are individuals, and the connections correspond to their acquaintance and describe mutual influence. At each of the discrete points in time, each individual decides which party to support based on their attitude, i. e. predisposition to the Left or Right party and taking into account the influence of his network ties. The influence means here that each tie sends a cue with a certain probability to the individual in question in favor of the party that themselves currently support. If the tie switches their party affiliation, they begin to agitate the individual in question for their “new” party. Such processes create dynamics, i. e. the process of changing the partisanship of individuals. The duration of the warfare is exogenously set, with the final time point roughly associated with the election day. The described model is numerically implemented on a scale-free network. Numerical experiments have been carried out for various values of network density. Because of the presence of stochastic elements in the model, 200 runs were conducted for each density value, for each of which the final number of supporters of each of the parties was calculated. It is found that with higher density, the chances increase that the winner will cover almost the entire population. Conversely, low network density contributes to the chances of a minority to maintain significant numbers.
-
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
Ключевые слова: моделирование социума, напряженность, дифференциальные уравнения, косимметрия, семейства равновесий, предельные циклы, мультистабильност.
Mathematical model of political differentiation under social tension
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.
To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.
This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.
-
Математические модели боевых и военных действий
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 217-242Моделирование боевых и военных действий является важнейшей научной и практической задачей, направленной на предоставление командованию количественных оснований для принятия решений. Первые модели боя были разработаны в годы первой мировой войны (М. Осипов, F. Lanchester), а в настоящее время они получили широкое распространение в связи с массовым внедрением средств автоматизации. Вместе с тем в моделях боя и войны не в полной мере учитывается моральный потенциал участников конфликта, что побуждает и мотивирует дальнейшее развитие моделей боя и войны. Рассмотрена вероятностная модель боя, в которой параметр боевого превосходства определен через параметр морального (отношение процентов выдерживаемых потерь сторон) и параметр технологического превосходства. Для оценки последнего учитываются: опыт командования (способность организовать согласованные действия), разведывательные, огневые и маневренные возможности сторон и возможности оперативного (боевого) обеспечения. Разработана теоретико-игровая модель «наступление–оборона», учитывающая действия первых и вторых эшелонов (резервов) сторон. Целевой функцией наступающих в модели является произведение вероятности прорыва первым эшелоном одного из пунктов обороны на вероятность отражения вторым эшелоном контратаки резерва обороняющихся. Решена частная задача управления прорывом пунктов обороны и найдено оптимальное распределение боевых единиц между эшелонами. Доля войск, выделяемая сторонами во второй эшелон (резерв), растет с увеличением значения агрегированного параметра боевого превосходства наступающих и уменьшается с увеличением значения параметра боевого превосходства при отражении контратаки. При планировании боя (сражения, операции) и распределении своих войск между эшелонами важно знать не точное количество войск противника, а свои и его возможности, а также степень подготовленности обороны, что не противоречит опыту ведения боевых действий. В зависимости от условий обстановки целью наступления может являться разгром противника, скорейший захват важного района в глубине обороны противника, минимизация своих потерь и т. д. Для масштабирования модели «наступление–оборона» по целям найдены зависимости потерь и темпа наступления от начального соотношения боевых потенциалов сторон. Выполнен учет влияния общественных издержек на ход и исход войн. Дано теоретическое объяснение проигрыша в военной кампании со слабым в технологическом отношении противником и при неясной для общества цели войны. Для учета влияния психологических операций и информационных войн на моральный потенциал индивидов использована модель социально-информационного влияния.
Ключевые слова: математическая модель, бой, наступление, оборона, война, моральный фактор, уравнения Осипова–Ланчестера, вероятностная модель, теоретико-игровая модель.
Mathematical models of combat and military operations
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 217-242Simulation of combat and military operations is the most important scientific and practical task aimed at providing the command of quantitative bases for decision-making. The first models of combat were developed during the First World War (M. Osipov, F. Lanchester), and now they are widely used in connection with the massive introduction of automation tools. At the same time, the models of combat and war do not fully take into account the moral potentials of the parties to the conflict, which motivates and motivates the further development of models of battle and war. A probabilistic model of combat is considered, in which the parameter of combat superiority is determined through the parameter of moral (the ratio of the percentages of the losses sustained by the parties) and the parameter of technological superiority. To assess the latter, the following is taken into account: command experience (ability to organize coordinated actions), reconnaissance, fire and maneuverability capabilities of the parties and operational (combat) support capabilities. A game-based offensive-defense model has been developed, taking into account the actions of the first and second echelons (reserves) of the parties. The target function of the attackers in the model is the product of the probability of a breakthrough by the first echelon of one of the defense points by the probability of the second echelon of the counterattack repelling the reserve of the defenders. Solved the private task of managing the breakthrough of defense points and found the optimal distribution of combat units between the trains. The share of troops allocated by the parties to the second echelon (reserve) increases with an increase in the value of the aggregate combat superiority parameter of those advancing and decreases with an increase in the value of the combat superiority parameter when repelling a counterattack. When planning a battle (battles, operations) and the distribution of its troops between echelons, it is important to know not the exact number of enemy troops, but their capabilities and capabilities, as well as the degree of preparedness of the defense, which does not contradict the experience of warfare. Depending on the conditions of the situation, the goal of an offensive may be to defeat the enemy, quickly capture an important area in the depth of the enemy’s defense, minimize their losses, etc. For scaling the offensive-defense model for targets, the dependencies of the losses and the onset rate on the initial ratio of the combat potentials of the parties were found. The influence of social costs on the course and outcome of wars is taken into account. A theoretical explanation is given of a loss in a military company with a technologically weak adversary and with a goal of war that is unclear to society. To account for the influence of psychological operations and information wars on the moral potential of individuals, a model of social and information influence was used.
-
Моделирование баллистики артиллерийского выстрела с учетом пространственного распределения параметров и противодавления
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1123-1147В работе приводится сравнительный анализ результатов, полученных при различных подходах к моделированию процесса артиллерийского выстрела. В этой связи дана постановка основной задачи внутренней баллистики и ее частного случая задачи Лагранжа в осредненных параметрах, где в рамках допущений термодинамического подхода впервые учтены распределения давления и скорости газа по заснарядному пространству для канала переменного сечения. Представлена также постановка задачи Лагранжа в рамках газодинамического подхода, учитывающего пространственное (одномерное и двумерное осесимметричное) изменение характеристик внутрибаллистического процесса. Для численного решения системы газодинамических уравнений Эйлера применяется метод контрольного объема. Параметры газа на границах контрольных объемов опреде- ляются с использованием автомодельного решения задачи о распаде произвольного разрыва. На базе метода Годунова предложена модификация схемы Ошера, позволяющая реализовать алгоритм численного расчета со вторым порядком точности по координате и времени. Проведено сравнение решений, полученных в рамках термодинамического и газодинамического подходов, при различных параметрах заряжания. Изучено влияние массы снаряда и уширения камеры на распределение внутрибаллистических параметров выстрела и динамику движения снаряда. Показано, что термодинамический подход, по сравнению с газодинамическим подходом, приводит к систематическому завышению расчетной дульной скорости снаряда во всем исследованном диапазоне изменения параметров, при этом различие по дульной скорости может достигать 35 %. В то же время расхождение результатов, полученных в рамках одномерной и двумерной газодинамических моделей выстрела в этом же диапазоне изменения параметров, составляет не более 1.3 %.
Дана пространственная газодинамическая постановка задачи о противодавлении, описывающая изменение давления перед ускоряющимся снарядом при его движении по каналу ствола. Показано, что учет формы передней части снаряда в рамках двумерной осесимметричной постановки задачи приводит к существенному различию полей давления за фронтом ударной волны по сравнению с решением в рамках одномерной постановки задачи, где форму передней части снаряда учесть невозможно. Сделан вывод, что это может существенно повлиять на результаты моделирования баллистики выстрела при высоких скоростях метания.
Ключевые слова: артиллерийская система, основная задача внутренней баллистики, задача Лагранжа, противодавление, математическое моделирование, термодинамический подход, газодинамический подход, вычислительный эксперимент, сравнение результатов.
Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.
A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.
-
Математические методы стабилизации структуры социальных систем при действии внешних возмущений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 845-857В статье рассматривается билинейная модель влияния внешних возмущений на стабильность струк- туры социальных систем. Исследуются подходы к стабилизации третьей стороной исходной системы, состоящей из двух групп, — путем сведения исходной системы к линейной системе с неопределенными параметрами и использования результатов теории линейных динамических игр с квадратичным критери- ем. На основе компьютерных экспериментов анализируется влияние коэффициентов условной модели социальной системы и параметров управления на качество стабилизации системы. Показано, что исполь- зование третьей стороной минимаксной стратегии в форме управления с обратной связью приводит к от- носительно близкому приближению численности второй группы (возбуждаемой внешними воздействия- ми) к приемлемому уровню даже при неблагоприятном периодическом динамическом воздействии.
Исследуется влияние на качество стабилизации системы одного из ключевых коэффициентов в кри- терии $(\varepsilon)$, используемого для компенсации воздействия внешних возмущений (последние присутствуют в линейной модели в форме неопределенности). С использованием операционного исчисления показыва- ется, что уменьшение коэффициента ε должно приводить к увеличению значений суммы квадратов уп- равления. Проведенные в статье компьютерные расчеты показывают также, что улучшение приближения структуры системы к равновесному уровню при уменьшении коэффициента $\varepsilon$ достигается за счет весьма резких изменений управления $V_t$ в начальный период, что может индуцировать переход части членов спокойной группы во вторую, возбужденную группу.
В статье исследуется также влияние на качество управления значений коэффициентов модели, ха- рактеризующих уровень социальной напряженности. Расчеты показывают, что повышение уровня соци- альной напряженности (при прочих равных условиях) приводит к необходимости значительного увели- чения третьей стороной усилий на стабилизацию, а также величины управления в начальный момент времени.
Результаты проведенного в статье статистического моделирования показывают, что рассчитанные управления с обратной связью успешно компенсируют случайные возмущения, действующие на соци- альную систему (как в форме независимых воздействий типа белый шум, так и в форме автокоррелиро- ванных воздействий).
Ключевые слова: модели, социальные группы, стабильность, линейные динамические системы, неопределенные параметры.
Mathematical methods for stabilizing the structure of social systems under external disturbances
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 845-857The article considers a bilinear model of the influence of external disturbances on the stability of the structure of social systems. Approaches to the third-party stabilization of the initial system consisting of two groups are investigated — by reducing the initial system to a linear system with uncertain parameters and using the results of the theory of linear dynamic games with a quadratic criterion. The influence of the coefficients of the proposed model of the social system and the control parameters on the quality of the system stabilization is analyzed with the help of computer experiments. It is shown that the use of a minimax strategy by a third party in the form of feedback control leads to a relatively close convergence of the population of the second group (excited by external influences) to an acceptable level, even with unfavorable periodic dynamic perturbations.
The influence of one of the key coefficients in the criterion $(\varepsilon)$ used to compensate for the effects of external disturbances (the latter are present in the linear model in the form of uncertainty) on the quality of system stabilization is investigated. Using Z-transform, it is shown that a decrease in the coefficient $\varepsilon$ should lead to an increase in the values of the sum of the squares of the control. The computer calculations carried out in the article also show that the improvement of the convergence of the system structure to the equilibrium level with a decrease in this coefficient is achieved due to sharp changes in control in the initial period, which may induce the transition of some members of the quiet group to the second, excited group.
The article also examines the influence of the values of the model coefficients that characterize the level of social tension on the quality of management. Calculations show that an increase in the level of social tension (all other things being equal) leads to the need for a significant increase in the third party's stabilizing efforts, as well as the value of control at the transition period.
The results of the statistical modeling carried out in the article show that the calculated feedback controls successfully compensate for random disturbances on the social system (both in the form of «white» noise, and of autocorrelated disturbances).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"