Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'convex optimization':
Найдено статей: 37
  1. Иванова А.С., Омельченко С.С., Котлярова Е.В., Матюхин В.В.
    Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978

    В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.

    Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.

    Ivanova A.S., Omelchenko S.S., Kotliarova E.V., Matyukhin V.V.
    Calibration of model parameters for calculating correspondence matrix for Moscow
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 961-978

    In this paper, we consider the problem of restoring the correspondence matrix based on the observations of real correspondences in Moscow. Following the conventional approach [Gasnikov et al., 2013], the transport network is considered as a directed graph whose edges correspond to road sections and the graph vertices correspond to areas that the traffic participants leave or enter. The number of city residents is considered constant. The problem of restoring the correspondence matrix is to calculate all the correspondence from the $i$ area to the $j$ area.

    To restore the matrix, we propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. In our work, which is based on the work [Wilson, 1978], we describe the evolutionary justification of the entropy model and the main idea of the transition to solving the problem of entropy-linear programming (ELP) in calculating the correspondence matrix. To solve the ELP problem, it is proposed to pass to the dual problem. In this paper, we describe several numerical optimization methods for solving this problem: the Sinkhorn method and the Accelerated Sinkhorn method. We provide numerical experiments for the following variants of cost functions: a linear cost function and a superposition of the power and logarithmic cost functions. In these functions, the cost is a combination of average time and distance between areas, which depends on the parameters. The correspondence matrix is calculated for multiple sets of parameters and then we calculate the quality of the restored matrix relative to the known correspondence matrix.

    We assume that the noise in the restored correspondence matrix is Gaussian, as a result, we use the standard deviation as a quality metric. The article provides an overview of gradient-free optimization methods for solving non-convex problems. Since the number of parameters of the cost function is small, we use the grid search method to find the optimal parameters of the cost function. Thus, the correspondence matrix calculated for each set of parameters and then the quality of the restored matrix is evaluated relative to the known correspondence matrix. Further, according to the minimum residual value for each cost function, we determine for which cost function and at what parameter values the restored matrix best describes real correspondence.

  2. Гладин Е.Л., Зайнуллина К.Э.
    Метод эллипсоидов для задач выпуклой стохастической оптимизации малой размерности
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1137-1147

    В статье рассматривается задача минимизации математического ожидания выпуклой функции. Задачи такого вида повсеместны в машинном обучении, а также часто возникают в ряде других приложений. На практике для их решения обычно используются процедуры типа стохастического градиентного спуска (SGD). В нашей работе предлагается решать такие задачи с использованием метода эллипсоидов с мини-батчингом. Алгоритм имеет линейную скорость сходимости и может оказаться эффективнее SGD в ряде задач. Это подтверждается в наших экспериментах, исходный код которых находится в открытом доступе. Для получения линейной скорости сходимости метода не требуется ни гладкость, ни сильная выпуклость целевой функции. Таким образом, сложность алгоритма не зависит от обусловленности задачи. В работе доказывается, что метод эллипсоидов с наперед заданной вероятностью находит решение с желаемой точностью при использовании мини-батчей, размер которых пропорционален точности в степени -2. Это позволяет выполнять алгоритм параллельно на большом числе процессоров, тогда как возможности для батчараллелизации процедур типа стохастического градиентного спуска весьма ограничены. Несмотря на быструю сходимость, общее количество вычислений градиента для метода эллипсоидов может получиться больше, чем для SGD, который неплохо сходится и при маленьком размере батча. Количество итераций метода эллипсоидов квадратично зависит от размерности задачи, поэтому метод подойдет для относительно небольших размерностей.

    Gladin E.L., Zainullina K.E.
    Ellipsoid method for convex stochastic optimization in small dimension
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1137-1147

    The article considers minimization of the expectation of convex function. Problems of this type often arise in machine learning and a variety of other applications. In practice, stochastic gradient descent (SGD) and similar procedures are usually used to solve such problems. We propose to use the ellipsoid method with mini-batching, which converges linearly and can be more efficient than SGD for a class of problems. This is verified by our experiments, which are publicly available. The algorithm does not require neither smoothness nor strong convexity of the objective to achieve linear convergence. Thus, its complexity does not depend on the conditional number of the problem. We prove that the method arrives at an approximate solution with given probability when using mini-batches of size proportional to the desired accuracy to the power −2. This enables efficient parallel execution of the algorithm, whereas possibilities for batch parallelization of SGD are rather limited. Despite fast convergence, ellipsoid method can result in a greater total number of calls to oracle than SGD, which works decently with small batches. Complexity is quadratic in dimension of the problem, hence the method is suitable for relatively small dimensionalities.

  3. Базарова А.И., Безносиков А.Н., Гасников А.В.
    Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255

    Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.

    В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.

    Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.

    Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.

    Bazarova A.I., Beznosikov A.N., Gasnikov A.V.
    Linearly convergent gradient-free methods for minimization of parabolic approximation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255

    Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.

    In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.

    In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.

    Experimental results confirm the efficiency and practical applicability of all the obtained methods.

  4. Юдин Н.Е.
    Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723

    В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.

    Yudin N.E.
    Modified Gauss–Newton method for solving a smooth system of nonlinear equations
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723

    In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.

  5. Гладин Е.Л., Бородич Е.Д.
    Редукция дисперсии для минимаксных задач с небольшой размерностью одной из переменных
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 257-275

    Статья посвящена выпукло-вогнутым седловым задачам, в которых целевая функция является суммой большого числа слагаемых. Такие задачи привлекают значительное внимание математического сообщества в связи с множеством приложений в машинном обучении, включая adversarial learning, adversarial attacks и robust reinforcement learning, и это лишь некоторые из них. Отдельные функции в сумме обычно представляют собой ошибку, связанную с объектом из выборки. Кроме того, формулировка допускает (возможно, негладкий) композитный член. Такие слагаемые часто отражают регуляризацию в задачах машинного обучения. Предполагается, что размерность одной из групп переменных относительно мала (около сотни или меньше), а другой — велика. Такой случай возникает, например, при рассмотрении двойственной формулировки задачи минимизации с умеренным числом ограничений. Предлагаемый подход основан на использовании метода секущей плоскости Вайды для минимизации относительно внешнего блока переменных. Этот алгоритм оптимизации особенно эффективен, когда размерность задачи не очень велика. Неточный оракул для метода Вайды вычисляется через приближенное решение внутренней задачи максимизации, которая решается ускоренным алгоритмом с редукцией дисперсии Katyusha. Таким образом, мы используем структуру задачи для достижения быстрой сходимости. В исследовании получены отдельные оценки сложности для градиентов различных компонент относительно различных переменных. Предложенный подход накладывает слабые предположения о целевой функции. В частности, не требуется ни сильной выпуклости, ни гладкости относительно низкоразмерной группы переменных. Количество шагов предложенного алгоритма, а также арифметическая сложность каждого шага явно зависят от размерности внешней переменной, отсюда предположение, что она относительно мала.

    Gladin E.L., Borodich E.D.
    Variance reduction for minimax problems with a small dimension of one of the variables
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 257-275

    The paper is devoted to convex-concave saddle point problems where the objective is a sum of a large number of functions. Such problems attract considerable attention of the mathematical community due to the variety of applications in machine learning, including adversarial learning, adversarial attacks and robust reinforcement learning, to name a few. The individual functions in the sum usually represent losses related to examples from a data set. Additionally, the formulation admits a possibly nonsmooth composite term. Such terms often reflect regularization in machine learning problems. We assume that the dimension of one of the variable groups is relatively small (about a hundred or less), and the other one is large. This case arises, for example, when one considers the dual formulation for a minimization problem with a moderate number of constraints. The proposed approach is based on using Vaidya’s cutting plane method to minimize with respect to the outer block of variables. This optimization algorithm is especially effective when the dimension of the problem is not very large. An inexact oracle for Vaidya’s method is calculated via an approximate solution of the inner maximization problem, which is solved by the accelerated variance reduced algorithm Katyusha. Thus, we leverage the structure of the problem to achieve fast convergence. Separate complexity bounds for gradients of different components with respect to different variables are obtained in the study. The proposed approach is imposing very mild assumptions about the objective. In particular, neither strong convexity nor smoothness is required with respect to the low-dimensional variable group. The number of steps of the proposed algorithm as well as the arithmetic complexity of each step explicitly depend on the dimensionality of the outer variable, hence the assumption that it is relatively small.

  6. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

    Kotliarova E.V., Gasnikov A.V., Gasnikova E.V., Yarmoshik D.V.
    Finding equilibrium in two-stage traffic assignment model
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 365-379

    Authors describe a two-stage traffic assignment model. It contains of two blocks. The first block consists of a model for calculating a correspondence (demand) matrix, whereas the second block is a traffic assignment model. The first model calculates a matrix of correspondences using a matrix of transport costs (it characterizes the required volumes of movement from one area to another, it is time in this case). To solve this problem, authors propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. The second model describes exactly how the needs for displacement specified by the correspondence matrix are distributed along the possible paths. Knowing the ways of the flows distribution along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage model is a fixed point in the sequence of these two models. In practice the problem of finding a fixed point can be solved by the fixed-point iteration method. Unfortunately, at the moment the issue of convergence and estimations of the convergence rate for this method has not been studied quite thoroughly. In addition, the numerical implementation of the algorithm results in many problems. In particular, if the starting point is incorrect, situations may arise where the algorithm requires extremely large numbers to be computed and exceeds the available memory even on the most modern computers. Therefore the article proposes a method for reducing the problem of finding the equilibrium to the problem of the convex non-smooth optimization. Also a numerical method for solving the obtained optimization problem is proposed. Numerical experiments were carried out for both methods of solving the problem. The authors used data for Vladivostok (for this city information from various sources was processed and collected in a new dataset) and two smaller cities in the USA. It was not possible to achieve convergence by the method of fixed-point iteration, whereas the second model for the same dataset demonstrated convergence rate $k^{-1.67}$.

  7. Плетнев Н.В.
    Ускоренные адаптивные по константам сильной выпуклости и Липшица для градиента методы первого порядка
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 947-963

    Работа посвящена построению эффективных и применимых к реальным задачам методов выпуклой оптимизации первого порядка, то есть использующих только значения целевой функции и ее производных. При построении используется быстрый градиентный метод OGM-G, который является оптимальным по оракульной сложности (числу вычислений градиента целевой функции), но при запуске требует знания констант сильной выпуклости и Липшица градиента для вычисления количества шагов и длины шага, требуемых для достижения заданной точности. Данное требование усложняет практическое использование метода. Предлагаются адаптивный по константе сильной выпуклости алгоритм ACGM, основанный на рестартах OGM-G с обновлениемо ценки константы сильной выпуклости, и адаптивный по константе Липшица градиента метод ALGM, в котором применение рестартов OGM-G дополнено подбором константы Липшица с проверкой условий гладкости, используемых в методе универсального градиентного спуска. При этом устраняются недостатки исходного метода, связанные с необходимостью знания данных констант, что делает возможным практическое использование. Доказывается, что оценки сложности построенных алгоритмов являются оптимальными с точностью до числового множителя. Для проверки полученных результатов проводятся эксперименты на модельных функциях и реальных задачах машинного обучения.

    Pletnev N.V.
    Fast adaptive by constants of strong-convexity and Lipschitz for gradient first order methods
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 947-963

    The work is devoted to the construction of efficient and applicable to real tasks first-order methods of convex optimization, that is, using only values of the target function and its derivatives. Construction uses OGMG, fast gradient method which is optimal by complexity, but requires to know the Lipschitz constant for gradient and the strong convexity constant to determine the number of steps and step length. This requirement makes practical usage very hard. An adaptive on the constant for strong convexity algorithm ACGM is proposed, based on restarts of the OGM-G with update of the strong convexity constant estimate, and an adaptive on the Lipschitz constant for gradient ALGM, in which the use of OGM-G restarts is supplemented by the selection of the Lipschitz constant with verification of the smoothness conditions used in the universal gradient descent method. This eliminates the disadvantages of the original method associated with the need to know these constants, which makes practical usage possible. Optimality of estimates for the complexity of the constructed algorithms is proved. To verify the results obtained, experiments on model functions and real tasks from machine learning are carried out.

  8. Данилова М.Ю., Малиновский Г.С.
    Метод тяжелого шарика с усреднением
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 277-308

    Методы оптимизации первого порядка являются важным рабочим инструментов для широкого спектра современных приложений в разных областях, среди которых можно выделить экономику, физику, биологию, машинное обучение и управление. Среди методов первого порядка особого внимания заслуживают ускоренные (моментные) методы в силу их практической эффективности. Метод тяжелого шарика (heavy-ball method — HB) — один из первых ускоренных методов. Данный метод был разработан в 1964 г., и для него был проведен анализ сходимости для квадратичных сильно выпуклых функций. С тех пор были предложены и проанализированы разные варианты HB. В частности, HB известен своей простотой реализации и эффективностью при решении невыпуклых задач. Однако, как и другие моментные методы, он имеет немонотонное поведение; более того, при сходимости HB с оптимальными параметрами наблюдается нежелательное явление, называемое пик-эффектом. Чтобы решить эту проблему, в этой статье мы рассматриваем усредненную версию метода тяжелого шарика (averaged heavy-ball method — AHB). Мы показываем, что для квадратичных задач AHB имеет меньшее максимальное отклонение от решения, чем HB. Кроме того, для общих выпуклых и сильно выпуклых функций доказаны неускоренные скорости глобальной сходимости AHB, его версии WAHB cо взвешенным усреднением, а также для AHB с рестартами R-AHB. Насколько нам известно, такие гарантии для HB с усреднением не были явно доказаны для сильно выпуклых задач в существующих работах. Наконец, мы проводим несколько численных экспериментов для минимизации квадратичных и неквадратичных функций, чтобы продемонстрировать преимущества использования усреднения для HB. Кроме того, мы также протестировали еще одну модификацию AHB, называемую методом tail-averaged heavy-ball (TAHB). В экспериментах мы наблюдали, что HB с правильно настроенной схемой усреднения сходится быстрее, чем HB без усреднения, и имеет меньшие осцилляции.

    Danilova M.Y., Malinovskiy G.S.
    Averaged heavy-ball method
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 277-308

    First-order optimization methods are workhorses in a wide range of modern applications in economics, physics, biology, machine learning, control, and other fields. Among other first-order methods accelerated and momentum ones obtain special attention because of their practical efficiency. The heavy-ball method (HB) is one of the first momentum methods. The method was proposed in 1964 and the first analysis was conducted for quadratic strongly convex functions. Since then a number of variations of HB have been proposed and analyzed. In particular, HB is known for its simplicity in implementation and its performance on nonconvex problems. However, as other momentum methods, it has nonmonotone behavior, and for optimal parameters, the method suffers from the so-called peak effect. To address this issue, in this paper, we consider an averaged version of the heavy-ball method (AHB). We show that for quadratic problems AHB has a smaller maximal deviation from the solution than HB. Moreover, for general convex and strongly convex functions, we prove non-accelerated rates of global convergence of AHB, its weighted version WAHB, and for AHB with restarts R-AHB. To the best of our knowledge, such guarantees for HB with averaging were not explicitly proven for strongly convex problems in the existing works. Finally, we conduct several numerical experiments on minimizing quadratic and nonquadratic functions to demonstrate the advantages of using averaging for HB. Moreover, we also tested one more modification of AHB called the tail-averaged heavy-ball method (TAHB). In the experiments, we observed that HB with a properly adjusted averaging scheme converges faster than HB without averaging and has smaller oscillations.

  9. Плетнев Н.В., Матюхин В.В.
    О модификации метода покомпонентного спуска для решения некоторых обратных задач математической физики
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 301-316

    Статья посвящена решению некорректно поставленных задач математической физики для эллиптических и параболических уравнений, а именно задачи Коши для уравнения Гельмгольца и ретроспективной задачи Коши для уравнения теплопроводности с постоянными коэффициентами. Эти задачи сводятся к задачам выпуклой оптимизации в гильбертовом пространстве. Градиенты соответствующих функционалов вычисляются приближенно с помощью решения двух корректных задач. Предлагается метод решения исследуемых задач оптимизации — покомпонентный спуск в базисе из собственных функций связанного с задачей самосопряженного оператора. Если бы было возможно точное вычисление градиента, то этот метод давал бы сколь угодно точное решение задачи в зависимости от количества рассматриваемых элементов базиса. В реальных случаях возникновение погрешностей при вычислениях приводит к нарушению монотонности, что требует применения рестартов и ограничивает достижимое качество. В работе приводятся результаты экспериментов, подтверждающие эффективность построенного метода. Определяется, что новый подход превосходит подходы, основанные на использовании градиентных методов оптимизации: он позволяет достичь лучшего качества решения при значительно меньшем расходе вычислительных ресурсов. Предполагается, что построенный метод может быть обобщен и на другие задачи.

    Pletnev N.V., Matyukhin V.V.
    On the modification of the method of component descent for solving some inverse problems of mathematical physics
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 301-316

    The article is devoted to solving ill-posed problems of mathematical physics for elliptic and parabolic equations, such as the Cauchy problem for the Helmholtz equation and the retrospective Cauchy problem for the heat equation with constant coefficients. These problems are reduced to problems of convex optimization in Hilbert space. The gradients of the corresponding functionals are calculated approximately by solving two well-posed problems. A new method is proposed for solving the optimization problems under study, it is component-by-component descent in the basis of eigenfunctions of a self-adjoint operator associated with the problem. If it was possible to calculate the gradient exactly, this method would give an arbitrarily exact solution of the problem, depending on the number of considered elements of the basis. In real cases, the inaccuracy of calculations leads to a violation of monotonicity, which requires the use of restarts and limits the achievable quality. The paper presents the results of experiments confirming the effectiveness of the constructed method. It is determined that the new approach is superior to approaches based on the use of gradient optimization methods: it allows to achieve better quality of solution with significantly less computational resources. It is assumed that the constructed method can be generalized to other problems.

  10. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Gasnikov A.V., Kubentayeva M.B.
    Searching stochastic equilibria in transport networks by universal primal-dual gradient method
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345

    We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.

    Просмотров за год: 28.
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.