Текущий выпуск Номер 4, 2024 Том 16

Все выпуски

Результаты поиска по 'модель расчета матрицы корреспонденций':
Найдено статей: 6
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 939-942
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  3. Иванова А.С., Омельченко С.С., Котлярова Е.В., Матюхин В.В.
    Калибровка параметров модели расчета матрицы корреспонденций для г. Москвы
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 961-978

    В данной работе рассматривается задача восстановления матрицы корреспонденций для наблюдений реальных корреспонденций в г. Москве. Следуя общепринятому подходу [Гасников и др., 2013], транспортная сеть рассматривается как ориентированный граф, дуги которого соответствуют участкам дороги, а вершины графа — районы, из которых выезжают / в которые въезжают участники движения. Число жителей города считается постоянным. Задача восстановления матрицы корреспонденций состоит в расчете всех корреспонденций израйона $i$ в район $j$.

    Для восстановления матрицы предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийная модель. В работе, в соответствии с работой [Вильсон, 1978], приводится описание эволюционного обоснования энтропийной модели, описывается основная идея перехода к решению задачи энтропийно-линейного программирования (ЭЛП) при расчете матрицы корреспонденций. Для решения полученной задачи ЭЛП предлагается перейти к двойственной задаче и решать задачу относительно двойственных переменных. В работе описывается несколько численных методов оптимизации для решения данной задачи: алгоритм Синхорна и ускоренный алгоритм Синхорна. Далее приводятся численные эксперименты для следующих вариантов функций затрат: линейная функция затрат и сумма степенной и логарифмической функции затрат. В данных функциях затраты представляют из себя некоторую комбинацию среднего времени в пути и расстояния между районами, которая зависит от параметров. Для каждого набора параметров функции затрат рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Мы предполагаем, что шум в восстановленной матрице корреспонденций является гауссовским, в результате в качестве метрики качества выступает среднеквадратичное отклонение. Данная задача представляет из себя задачу невыпуклой оптимизации. В статье приводится обзор безградиенных методов оптимизации для решения невыпуклых задач. Так как число параметров функции затрат небольшое, для определения оптимальных параметров функции затрат было выбрано использовать метод перебора по сетке значений. Таким образом, для каждого набора параметров рассчитывается матрица корреспонденций и далее оценивается качество восстановленной матрицы относительно известной матрицы корреспонденций. Далее по минимальному значению невязки для каждой функции затрат определяется, для какой функции затрат и при каких значениях параметров восстановленная матрица наилучшим образом описывает реальные корреспонденции.

  4. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

  5. Подлипнова И.В., Дорн Ю.В., Склонин И.А.
    Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103

    С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.

  6. Котлярова Е.В., Северилов П.А., Ивченков Я.П., Мокров П.В., Чеканов М.О., Гасникова Е.В., Шароватова Ю.И.
    Ускорение работы двухстадийной модели равновесного распределения потоков по сети
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 343-355

    В работе приведены возможные улучшения двухстадийной модели равновесного распределения транспортных потоков, повышающие качество детализации моделирования и скорость вычисления алгоритмов. Модель состоит из двух блоков, первый блок — модель расчета матрицы корреспонденций, второй блок — модель равновесного распределения транспортных потоков по путям. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Более подробно теория и эксперименты по данной модели были описаны в предыдущих работах авторов. В этой статье в первую очередь рассмотрена возможность сокращения вычислительного времени алгоритма расчета кратчайших путей (в модели стабильной динамики, равновесно распределяющей потоки). В исходном варианте эта задача была выполнена с помощью алгоритма Дийкстры, но, так как после каждой итерации блока распределения транспортных потоков, время, требующееся для прохода по ребру, изменяется не на всех ребрах (и если изменяется, то очень незначительно), во многом этот алгоритм был избыточен. Поэтому были проведены эксперименты с более новым методом, учитывающим подобные особенности, и приведен краткий обзор других ускоряющих подходов для будущих исследований. Эксперименты показали, что в некоторых случаях использование выбранного T-SWSF-алгоритма действительно сокращает вычислительное время. Во вторую очередь в блоке восстановления матрицы корреспонденций алгоритм Синхорна был заменен на алгоритм ускоренного Синхорна (или AAM-алгоритм), что, к сожалению, не показало ожидаемых результатов, расчетное время не изменилось. Инак онец, в третьем и финальном разделе приведена визуализация результатов экспериментов по добавлению платных дорог в двухстадийную модель, что помогло сократить количество перегруженных ребер в сети. Также во введении кратко описана мотивация данных исследований, приведено описание работы двухстадийной модели, а также на маленьком примере с двумя городами разобрано, как с ее помощью выполняется поиск равновесия.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.