Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'complex biological systems':
Найдено статей: 10
  1. Евин И.А.
    Введение в теорию сложных сетей
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 121-141

    В последние годы сложилось новое направление изучения сложных систем, рассматривающее их как сетевые структуры. Узлы в таких сетях представляют собой элементы этих сложных систем, а связи между узлами – взаимодействия между элементами. Эти исследования имеют дело с реальными системами, такими как биологические (метаболические сети клеток, функциональные сети мозга, экологические системы), технические (Интернет, WWW, сети компаний сотовой связи, сети электростанций), социальные (сети научного сотрудничества, сети актеров кино, сети знакомств). Оказалось, что эти сети имеют более сложную архитектуру, чем классические случайные сети. В предлагаемом обзоре даются основные понятия теории сложных сетей, а также кратко описаны основные направления изучения реальных сетевых структур.

    Yevin I.A.
    Introduction to the theory of complex networks
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 121-141

    There was a new direction of studying of the complex systems last years, considering them as networks. Nodes in such networks represent elements of these complex systems, and links between nodes – interactions between elements. These researches deal with real systems, such as biological (metabolic networks of cells, functional networks of a brain, ecological systems), technical (the Internet, WWW, networks of the companies of cellular communication, power grids), social (networks of scientific cooperation, a network of movie actors, a network of acquaintances). It has appeared that these networks have more complex architecture, than classical random networks. In the offered review the basic concepts theory of complex networks are given, and the basic directions of studying of real networks structures are also briefly described.

    Просмотров за год: 53. Цитирований: 107 (РИНЦ).
  2. Стеряков А.А.
    Об одном универсальном методе построения моделей для сложных многоагентных систем
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 513-523

    Врабо те предлагается универсальный метод построения агентных имитационных моделей сложных систем, предполагающий их компьютерную реализацию на языках объектноориентированного программирования. Метод определяет способ построения математических моделей агентов и их взаимодействия, а также описывает архитектуру комплекса программ для имитации динамики моделируемой системы. Эффективность предлагаемого метода иллюстрируется примерами его применения для моделирования сложных систем из двух областей: экономической (модель финансового рынка с неоднородными агентами) и биологической (пространственно-временная имитация взаимодействия биологических популяций).

    Steryakov A.A.
    A universal method for constructing the simulation model of complex multi-agent systems
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 513-523

    This paper presents a universal method for constructing an agent-based model of complex systems for their further clear computer representation by means of object-oriented programming languages. The method specifies both steps of model developing from the mathematical description of the system to the determined architecture of the program simulating the system. The efficiency of the method is illustrated by the construction of the two simulation models for the complex systems of various origins: the interactive simulation of the stock exchange and space-time simulation of biological species competition.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  3. Демлов П., Люнгфириа Х., Мюллер С.К.
    Эффекты воздействия электрического поля на химические структуры
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718

    Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.

    Dähmlow P., Luengviria C., Müller S.C.
    Electric field effects in chemical patterns
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718

    Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.

    Просмотров за год: 8.
  4. Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.

    Frisman E.Y., Kulakov M.P.
    From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109

    Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.

  5. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Просмотров за год: 40. Цитирований: 2 (РИНЦ).
  6. Аристов В.В., Ильин О.В.
    Методы и задачи кинетического подхода для моделирования биологических структур
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866

    Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.

    Aristov V.V., Ilyin O.V.
    Methods and problems in the kinetic approach for simulating biological structures
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 851-866

    The biological structure is considered as an open nonequilibrium system which properties can be described on the basis of kinetic equations. New problems with nonequilibrium boundary conditions are introduced. The nonequilibrium distribution tends gradually to an equilibrium state. The region of spatial inhomogeneity has a scale depending on the rate of mass transfer in the open system and the characteristic time of metabolism. In the proposed approximation, the internal energy of the motion of molecules is much less than the energy of translational motion. Or in other terms we can state that the kinetic energy of the average blood velocity is substantially higher than the energy of chaotic motion of the same particles. We state that the relaxation problem models a living system. The flow of entropy to the system decreases in downstream, this corresponds to Shrödinger’s general ideas that the living system “feeds on” negentropy. We introduce a quantity that determines the complexity of the biosystem, more precisely, this is the difference between the nonequilibrium kinetic entropy and the equilibrium entropy at each spatial point integrated over the entire spatial region. Solutions to the problems of spatial relaxation allow us to estimate the size of biosystems as regions of nonequilibrium. The results are compared with empirical data, in particular, for mammals we conclude that the larger the size of animals, the smaller the specific energy of metabolism. This feature is reproduced in our model since the span of the nonequilibrium region is larger in the system where the reaction rate is shorter, or in terms of the kinetic approach, the longer the relaxation time of the interaction between the molecules. The approach is also used for estimation of a part of a living system, namely a green leaf. The problems of aging as degradation of an open nonequilibrium system are considered. The analogy is related to the structure, namely, for a closed system, the equilibrium of the structure is attained for the same molecules while in the open system, a transition occurs to the equilibrium of different particles, which change due to metabolism. Two essentially different time scales are distinguished, the ratio of which is approximately constant for various animal species. Under the assumption of the existence of these two time scales the kinetic equation splits in two equations, describing the metabolic (stationary) and “degradative” (nonstationary) parts of the process.

    Просмотров за год: 31.
  7. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

    Bashkirtseva I.A., Perevalova T.V., Ryashko L.B.
    Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1343-1356

    This work is devoted to the study of the problem of modeling and analyzing complex oscillatory modes, both regular and chaotic, in systems of interacting populations in the presence of random perturbations. As an initial conceptual deterministic model, a Volterra system of three differential equations is considered, which describes the dynamics of prey populations of two competing species and a predator. This model takes into account the following key biological factors: the natural increase in prey, their intraspecific and interspecific competition, the extinction of predators in the absence of prey, the rate of predation by predators, the growth of the predator population due to predation, and the intensity of intraspecific competition in the predator population. The growth rate of the second prey population is used as a bifurcation parameter. At a certain interval of variation of this parameter, the system demonstrates a wide variety of dynamic modes: equilibrium, oscillatory, and chaotic. An important feature of this model is multistability. In this paper, we focus on the study of the parametric zone of tristability, when a stable equilibrium and two limit cycles coexist in the system. Such birhythmicity in the presence of random perturbations generates new dynamic modes that have no analogues in the deterministic case. The aim of the paper is a detailed study of stochastic phenomena caused by random fluctuations in the growth rate of the second population of prey. As a mathematical model of such fluctuations, we consider white Gaussian noise. Using methods of direct numerical modeling of solutions of the corresponding system of stochastic differential equations, the following phenomena have been identified and described: unidirectional stochastic transitions from one cycle to another, trigger mode caused by transitions between cycles, noise-induced transitions from cycles to the equilibrium, corresponding to the extinction of the predator and the second prey population. The paper presents the results of the analysis of these phenomena using the Lyapunov exponents, and identifies the parametric conditions for transitions from order to chaos and from chaos to order. For the analytical study of such noise-induced multi-stage transitions, the technique of stochastic sensitivity functions and the method of confidence regions were applied. The paper shows how this mathematical apparatus allows predicting the intensity of noise, leading to qualitative transformations of the modes of stochastic population dynamics.

  8. Ухманьски Я.З.
    Об алгоритмической сущности биологии
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 641-652

    Степень математизации физики чрезвычайно высока, и это позволяет понимать законы природы путем анализа математических структур, которые их описывают. Но это верно лишь для физических законов. Напротив, степень математизации биологии весьма невелика, и все попытки ее математизации ограничиваются применением тех математических методов, которые употребляются для описания физических систем. Такой подход, возможно, ошибочен, поскольку биологическим системам придаются атрибуты, которых у них нет. Некоторые думают, что нам нужны новые математические методы, которые соответствуют нуждам биологии и не известны физике. Однако, рассматривая специфику биологических систем, мы должны говорить об их алгоритмичности, а не об их математичности. В качестве примеров алгоритмического подхода к биологическим системам можно указать на так называемые индивидуальные модели (individual-based models), которые в экологии употребляются для описания динамики популяций, или на фрактальные модели, описывающие геометрическую структуру растений.

    Uchmanski J.Z.
    On algorithmic essence of biology
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 641-652

    Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.

  9. Сергиенко А.В., Акименко С.С., Карпов А.А., Мышлявцев А.В.
    Оценка влияния простейшего типа многочастичных взаимодействий на примере решеточной модели адсорбционного слоя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 445-458

    Самоорганизация молекул на твердой поверхности является одним из перспективных направлений по созданию материалов с уникальными магнитными, электрическими и оптическими свойствами. Они могут широко применяться в таких областях, как электроника, оптоэлектроника, катализ и биология. Однако на структуру и физико-химические свойства адсорбирующихся молекул оказывает влияние множество параметров, которые необходимо учитывать при изучении процесса самоорганизации молекул. В связи с этим экспериментальное исследование свойств новых материалов данного типа оказывается дорогостоящим, а также довольно часто его проведение затруднительно по различным причинам. В таких ситуациях целесообразнее воспользоваться методами математического моделирования. В рассматриваемых адсорбционных системах одним из параметров является многочастичное взаимодействие, которое часто не учитывается в моделировании из-за усложнения расчетов. В данной работе мы провели оценку влияния многочастичных взаимодействий на общую энергию системы с помощью метода трансфер-матрицы и программного комплекса Materials Studio. За основу была взята модель моноцентровой адсорбции молекул на треугольной решетке с учетом ближайших взаимодействий. Для этой модели были построены фазовые диаграммы в основном состоянии и проведены расчеты ряда термодинамических характеристик (степени покрытия $\theta$, энтропии $S$, восприимчивости $\xi $) при ненулевых температурах. Было обнаружено образование всех четырех упорядоченных структур (решеточный газ с $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ} с $\theta = \frac{1}{3}, $\sqrt{3} \times \sqrt{3}R^{*}30^{\circ} с $\theta = 23$, плотнейшая фаза с $\theta = 1$) в системе, учитывающей исключительно двухчастичные взаимодействия, и отсутствие фазы  $(\sqrt{3}\times \sqrt{3}) R30^\circ$ при учете только трехчастичных взаимодействий. На основе квантово-механических расчетов на примере атомистической модели адсорбционного слоя тримезиновой кислоты мы определили, что в такой системе вклад многочастичного характера взаимодействий составляет 11,44% от энергии двухчастичных взаимодействий. При таких значениях в решеточной модели возникают только количественные отличия, проявляющиеся в смещении области перехода из структуры $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ в плотнейшую фазу вправо на 38,25% при $\frac{\varepsilon}{RT} = 4$ и влево на 23,46% при $\frac{\varepsilon}{RT} = −2$.

    Sergienko A.V., Akimenko S.S., Karpov A.A., Myshlyavtsev A.V.
    Influence of the simplest type of multiparticle interactions on the example of a lattice model of an adsorption layer
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 445-458

    Self-organization of molecules on a solid surface is one of the promising directions for materials generation with unique magnetic, electrical, and optical properties. They can be widely used in fields such as electronics, optoelectronics, catalysis, and biology. However, the structure and physicochemical properties of adsorbed molecules are influenced by many parameters that must be taken into account when studying the self-organization of molecules. Therefore, the experimental study of such materials is expensive, and quite often it is difficult for various reasons. In such situations, it is advisable to use the mathematical modeling. One of the parameters in the considered adsorption systems is the multiparticle interaction, which is often not taken into account in simulations due to the complexity of the calculations. In this paper, we evaluated the influence of multiparticle interactions on the total energy of the system using the transfer-matrix method and the Materials Studio software package. The model of monocentric adsorption with nearest interactions on a triangular lattice was taken as the basis. Phase diagrams in the ground state were constructed and a number of thermodynamic characteristics (coverage $\theta$, entropy $S$, susceptibility $\xi$) were calculated at nonzero temperatures. The formation of all four ordered structures lattice gas with $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ} with $\theta = \frac{1}{3}, $\sqrt{3} \times \sqrt{3}R^{*}30^{\circ} with $\theta = 23$, and densest phase with $\theta = 1$ in a system with only pairwise interactions, and the absence of the phase  $(\sqrt{3}\times \sqrt{3}) R30^\circ$ when only three-body interactions are taken into account, were found. Using the example of an atomistic model of the trimesic acid adsorption layer by quantum mechanical methods we determined that in such a system the contribution of multiparticle interactions is 11.44% of the pair interactions energy. There are only quantitative differences at such values. The transition region from the  $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ to the densest phase shifts to the right by 38.25% at $\frac{\varepsilon}{RT} = 4$ and to the left by 23.46% at $\frac{\varepsilon}{RT} = −2$.

  10. Титлянова А.А.
    Школы по математической биологии 1973–1992 гг.
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 411-422

    В кратком обзоре описаны тематика и выборочные доклады Школ по моделированию сложных биологических систем. Школы явились естественным развитием этого направления науки в нашей стране, местом коллективного мозгового штурма, вдохновляемого такими выдающимися фигурами современности, как А. А. Ляпунов, Н. В. Тимофеев-Ресовский, А. М. Молчанов. На школах в острой дискуссионной форме поднимались общие вопросы методологии математического моделирования в биологии и экологии, обсуждались фундаментальные принципы структурной организации и функции сложных биологических и экологических систем. Школы служили важным примером междисциплинарного взаимодействия ученых разных не только и не столько специальностей, сколько разных мироощущений, подходов и способов отодвигать границу непознанного. Что тем не менее объединяло математиков и биологов, участников школ, так это общее понимание плодотворности данного союза. Доклады, дискуссии, размышления, сохранившиеся в материалах Школ, не потеряли актуальность до сих пор и могут служить определенными ориентирами для современного поколения ученых.

    Titlyanova A.A.
    Schools on mathematical biology 1973–1992
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 411-422

    This is a brief review of the subjects, and an impression of some talks, which were given at the Schools on modelling complex biological systems. Those Schools reflected a logical progress in this way of thinking in our country and provided a place for collective “brain-storming” inspired by prominent scientists of the last century, such as A. A. Lyapunov, N. V. Timofeeff-Ressovsky, A. M. Molchanov. At the Schools, general issues of methodology of mathematical modeling in biology and ecology were raised in the form of heated debates, the fundamental principles for how the structure of matter is organized and how complex biological systems function and evolve were discussed. The Schools served as an important sample of interdisciplinary actions by the scientists of distinct perceptions of the World, or distinct approaches and modes to reach the boundaries of the Unknown, rather than of different specializations. What was bringing together the mathematicians and biologists attending the Schools was the common understanding that the alliance should be fruitful. Reported in the issues of School proceedings, the presentations, discussions, and reflections have not yet lost their relevance so far and might serve as certain guidance for the new generation of scientists.

    Просмотров за год: 2.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.