Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Равномерные вложения графа в метрические пространства
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 241-251Рассмотрена задача вложения бесконечного счетного графа в непрерывное метрическое пространство. Введено понятие равномерного вложения, при котором не возникает точек накопления на множестве образов вершин и образы ребер имеют ограниченную длину. Найдены необходимые и достаточные условия в терминах структуры графа для возможности равномерного вложения в пространства с метриками Эвклида и Лоренца. Доказано, что деревья с конечным ветвлением имеют равномерное вложение в пространство с метрикой модуля метрики Минковского.
Ключевые слова: метрическое пространство, бесконечный граф, факторграф, метрика Минковского, метрика Лоренца, метрика Эвклида.
Uniform graph embedding into metric spaces
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 241-251The task of embedding an infinity countable graph into continuous metric space is considered. The concept of uniform embedding having no accumulation point in a set of vertex images and having all graph edge images of a limited length is introduced. Necessary and sufficient conditions for possibility of uniform embedding into spaces with Euclid and Lorenz metrics are stated in terms of graph structure. It is proved that tree graphs with finite branching have uniform embedding into space with absolute Minkowski metric.
Keywords: metric space, infinite graph, factor graph, Minkowski metric, Lorenz metric, Euclid metric. -
Оценки порога и мощности перколяционных кластеров на квадратных решётках с (1,π)-окрестностью
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 405-414В работе рассматриваются статистические оценки порога и мощности перколяционных кластеров на квадратных решетках. Порог перколяции pc и мощность перколяционных кластеров P∞ на квадратной решетке с (1,π)-окрестностью зависят не только от размерности решетки, но от показателя Минковского π. Для оценки мощности перколяционных кластеров P∞ предложен новый метод, основанный на усреднении относительных частот целевого подмножества узлов решетки. Реализация предложенного метода основана на библиотеке SPSL, выпущенной под лицензией GNU GPL-3 с использованием свободного языка программирования R.
Ключевые слова: перколяция узлов, квадратная решетка, неметрическое расстояние Минковского, окрестность Мура, порог перколяции, мощность перколяционного кластера, язык программирования R, библиотека SPSL.
Estimates of threshold and strength of percolation clusters on square lattices with (1,π)-neighborhood
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 405-414Просмотров за год: 4. Цитирований: 5 (РИНЦ).In this paper we consider statistical estimates of threshold and strength of percolation clusters on square lattices. The percolation threshold pc and the strength of percolation clusters P∞ for a square lattice with (1,π)-neighborhood depends not only on the lattice dimension, but also on the Minkowski exponent d. To estimate the strength of percolation clusters P∞ proposed a new method of averaging the relative frequencies of the target subset of lattice sites. The implementation of this method is based on the SPSL package, released under GNU GPL-3 using the free programming language R.
-
Перколяционное моделирование гидравлического гистерезиса в пористой среде
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 543-558В работе рассматриваются различные модели гидравлического гистерезиса, возникающего при инвазивной ртутной порометрии. Для моделирования гидравлического гистерезиса используется изотропная перколяция узлов на трехмерных квадратных решетках с $(1,\,\pi)$-окрестностью. Феноменологически исследуется взаимосвязь данных инвазивной порометрии с параметрами перколяционной модели. Реализация перколяционной модели основана на библиотеках SPSL и SECP, выпущенных под лицензией GNU GPL-3 с использованием свободного языка программирования R.
Ключевые слова: инвазивная ртутная порометрия, гидравлический гистерезис, перколяция узлов, квадратная решетка, неметрическое расстояние Минковского, окрестность Мура, массовая фрактальная размерность, язык программирования R, библиотека SPSL, библиотека SECP.
Percolation modeling of hydraulic hysteresis in a porous media
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 543-558Просмотров за год: 3. Цитирований: 1 (РИНЦ).In this paper we consider various models of hydraulic hysteresis in invasive mercury porosimetry. For simulating the hydraulic hysteresis is used isotropic site percolation on three-dimensional square lattices with $(1,\,\pi)$-neighborhood. The relationship between the percolation model parameters and invasive porosimetry data is studied phenomenologically. The implementation of the percolation model is based on libraries SPSL and SECP, released under license GNU GPL-3 using the free programming language R.
-
Структура моделей перколяции узлов на трехмерных квадратных решетках
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 607-622В работе рассматривается структура моделей перколяции узлов на трехмерных квадратных решеткахпри различныхфор мах (1,π)-окрестности. Для этихмо делей предложены изо- и анизотропные модификации алгоритма инвазивной перколяции с (1,0)- и (1,π)-окрестностями. Все рассмотренные алгоритмы являются частными случаями анизотропного алгоритма инвазивной перколяции на n-мерной решетке с (1,π)-окрестностью. Данный алгоритм положен в основу библиотеки SPSL, выпущенной под лицензией GNU GPL-3 с использованием свободного языка программирования R.
Ключевые слова: перколяция узлов, n-мерная квадратная решетка, неметрическое расстояние Минковского, язык программирования R, библиотека SPSL.
The structure of site percolation models on three-dimensional square lattices
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 607-622Просмотров за год: 8. Цитирований: 5 (РИНЦ).In this paper we consider the structure of site percolation models on three-dimensional square lattices with various shapes of (1,π)-neighborhood. For these models, are proposed iso- and anisotropic modifications of the invasion percolation algorithm with (1,0)- and (1,π)-neighborhoods. All the above algorithms are special cases of the anisotropic invasion percolation algorithm on the n-dimensional lattice with a (1,π)-neighborhood. This algorithm is the basis for the package SPSL, released under GNU GPL-3 using the free programming language R.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"