Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Аналоги фазовых переходов в экономике и демографии
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 209-218Рассмотрены эмпирические аналогии между кризисными процессами в социальных системах и фазовыми переходами с сопутствующими им критическими явлениями в «неживых» физических системах. Представлены качественное модельное описание историко-демографического прогресса (постепенная конденсация хозяйственных доменов с улучшением условий жизни населения), без дополнительных допущений объясняющее гиперболический рост населения Земли в I–XX вв. н. э., и модель современного мирового экономического кризиса как следствия спонтанной «конденсации капиталов», создавшей неуправляемые хозяйственные конгломераты, при свободной экспансии американской экономики в 1990-х и 2000-х гг. с ослаблением конкуренции («расширение в пустоту»).
Ключевые слова: социальные системы, фазовый переход, критические явления, кризис, демография, экономика.Просмотров за год: 9. Цитирований: 9 (РИНЦ). -
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342Просмотров за год: 34.В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
-
Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572Просмотров за год: 8. Цитирований: 1 (РИНЦ).Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.
-
Экономико-математическая модель для анализа сбалансированности спроса и предложения инженерно-технических специалистов
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1249-1273Проблема отсутствия сбалансированности спроса и предложения на рынке труда специалистов высшей и средней квалификации не только приводит к потерям человеческого капитала, но также в значительной мере препятствует инновационному и научно-технологическому развитию. Предварительный анализ показал, что во многом несбалансированность спроса и предложения труда инженерно-технических специалистов в России связана с процессом деиндустриализации и снижения престижности инженерной профессии, что привело к увеличению доли специалистов, не работающих по полученной специальности.
В работе предложена макроэкономическая модель, которая позволяет проводить сценарные прогнозы, а также с помощью решения оптимизационных задач определить условия достижения сбалансированности спроса и предложения труда инженерно-технических специалистов на среднесрочную перспективу. Модель состоит из 14 блоков, включая блоки для анализа спроса и предложения труда инженерно-технических специалистов, а также блоки для моделирования выпуска в промышленности, секторе услуг, экономике в целом, динамики инвестиций и основных фондов.
Результаты расчетов свидетельствуют о возможности существования сбалансированности спроса и предложения труда инженерно-технических специалистов при реализации сценариев одновременного роста доли инвестиций в основные фонды промышленности и относительной заработной платы в промышленности, а также показывают, что достижению сбалансированности способствует снижение оттока кадров из специальности, что также не противоречит выводам, полученным в результате экономического анализа. Следует отметить, что снижение доли специалистов, не работающих по специальности, может быть результатом как роста относительной заработной платы в промышленности и количества рабочих мест, так и реализации мероприятий по улучшению условий труда и повышения привлекательности профессии. Обобщая полученные результаты, в случае самого простого сценария, не учитывающего дополнительные меры по улучшению качества рабочих мест и повышению престижности профессии, для достижения сбалансированности требуются несколько менее высокие темпы роста инвестиций в промышленность, чем в сценариях, предусматривающих рост численности занятых инженерно-технических специалистов за счет увеличения доли работающих по специальности. В случае когда предполагается постепенное снижение доли не работающих по специальности инженерно-технических специалистов, возникает необходимость, вероятно, более высоких инвестиционных затрат в промышленности для привлечения специалистов и создания новых рабочих мест, а также дополнительных мер по повышению престижности профессии.
-
Technoscape: мультиагентная модель эволюции сети городов, объединенных торгово-производственными связями
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 163-178В работе предлагается многоагентная локально-нелокальная модель образования глобальной структуры городов с условным названием Technoscape. Technoscape можно в определенной степени считать также моделью возникновения глобальной экономики. Текущий вариант модели рассматривает очень простые способы поведения и взаимодействия агентов, при этом модель демонстрирует весьма интересные пространственно-временные паттерны.
Под локальностью и нелокальностью понимаются пространственные характеристики способа взаимодействия агентов друг с другом и с географическим пространством, на котором разворачивается эволюция системы. Под агентом понимается условный ремесленник, семья или промышленно-торговая фирма, причем не делается разницы между производством и торговлей. Агенты размещены на ограниченном двумерном пространстве, разбитом на квадратные ячейки, и перемещаются по нему. Модель демонстрирует процессы высокой концентрации агентов в выделенных ячейках, что трактуется как образование Technoscape: мультиагентная модель эволюции «сетигородов». Происходит постоянный процесс как возникновения, так и исчезновения городов. Агенты живут Technoscape: мультиагентная модель эволюции «сетивечно», не мутируют и не эволюционируют, хотя это перспективное направление развития модели.
Система Technoscape демонстрирует качественно новый вид самоорганизации. Частично эта самоорганизация напоминает поведение модели сегрегации по Томасу Шеллингу, однако эволюционные правила Technoscape существенно иные. В модели Шеллинга существуют лавины, но без добавления новых агентов в системе существуют простые равновесия, в то время как в Technoscape не существует даже строгих равновесий, в лучшем случае квазиравновесные, медленно изменяющиеся состояния.
Нетривиальный результат в модели Technoscape, также контрастирующий с моделью сегрегации Шеллинга, состоит в том, что агенты проявляют склонность к концентрации в больших городах даже при полном игнорировании локальных связей.
При этом, хотя агенты и стремятся в большие города, размер города не является гарантией стабильности. По ходу эволюции системы происходит постоянное Technoscape: мультиагентная модель эволюции «сетипереманивание» жителей в другие города такого же класса.
-
Модель для анализа неравенства доходов на основе конечной функциональной последовательности (проблемы адекватности и применения)
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 675-689Рассмотрены вопросы адекватности разработанной ранее автором модели для анализа неравенства доходов, основанной на эмпирически подтвержденной гипотезе о том, что относительные (по отношению к доходу наиболее богатой группы) величины дохода 20% групп населения в совокупном доходе могут быть приближенно представлены в виде конечной функциональной последовательности, каждый член которой зависит от одного параметра — специально определенного показателя неравенства. Показано, что в дополнение к существующим методам анализа неравенства с помощью этой модели можно определить зависимость доли дохода 20%, 10% и более мелких групп населения от уровня неравенства, выявить особенности их изменения при росте неравенства, рассчитать уровень неравенства при известных соотношениях между доходами различных групп населения и др.
В работе приводится более подробное подтверждение адекватности предложенной модели по сравнению с полученными ранее результатами статистического анализа эмпирических данных о распределении доходов между 20%- и 10%-ми группами населения. Оно основано на анализе определенных соотношений между величинами квинтилей и децилей согласно предлагаемой модели. Проверка этих соотношений проведена по совокупности данных для большого числа стран. Полученные оценки подтверждают достаточно высокую точность модели.
Приведены данные, которые подтверждают возможность применения модели для анализа зависимости распределения доходов по группам населения от уровня неравенства, а также для оценки показателя неравенства для вариантов соотношений доходов между различными группами, в том числе когда доход 20% наиболее богатых равен доходу 60% бедных, доходу 40% среднего класса или доходу 80% остального населения, а также когда доход 10% самых богатых равен доходу 40%, 50% или 60% бедных, доходу различных групп среднего класса и др., а также для случаев, когда распределение доходов подчиняется гармоническим пропорциям и когда квинтили и децили, соответствующие среднему классу, достигают максимума. Показано, что доли дохода наиболее богатых групп среднего класса относительно стабильны и имеют максимум при определенных уровнях неравенства.
Полученные с помощью модели результаты могут быть использованы для определения нормативов при разработке политики поэтапного повышении уровня прогрессивного налогообложения с целью перехода к уровню неравенства, характерному для стран с социально ориентированной экономикой.
Ключевые слова: неравенство, доход, модель, распределение, показатель неравенства, адекватность, последовательность. -
Модель интерференции длинных волн экономического развития
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 649-663В статье обосновывается необходимость разработки и анализа математических моделей, учитывающих взаимное влияние длинных (кондратьевских) волн экономического развития. Анализ имеющихся публикаций показывает, что на модельном уровне прямые и обратные связи между пересекающимися длинными волнами до сих пор изучены недостаточно. Как свидетельствует практика, производства текущей длинной волны могут получать дополнительный импульс к росту со стороны технологий следующей длинной волны. Технологии очередной промышленной революции часто служат улучшающими инновациями для производств, рожденных предшествующей промышленной революцией. Как следствие, новая длинная волна увеличивает амплитуду колебаний траектории предшествующей длинной волны. Такого рода результаты взаимодействия длинных волн в экономике похожи на эффекты интерференции физических волн. Взаимовлияние спадов и подъемов экономик разных стран дает еще больше оснований для сопоставления последствий этого взаимовлияния с интерференцией физических волн. В статье представлена модель развития технологической базы производства, учитывающая возможности комбинирования старых и новых технологий. Модель состоит из нескольких подмоделей. Использование отличающегося математического описания для отдельных этапов обновления технологической базы производства позволяет учесть значительные различия между последовательными фазами жизненного цикла технологий широкого применения, рассматриваемых в современной литературе в качестве технологической основы промышленных революций. Одной из таких фаз является период формирования соответствующей инфраструктуры, необходимой для интенсивной диффузии новой технологии широкого применения, для быстрого развития использующих эту технологию отраслей. По модели выполнены иллюстративные расчеты при значениях экзогенных параметров, отвечающих логике смены длинных волн. При всей условности проведенных иллюстративных расчетов конфигурация кривой, представляющей изменение фондоотдачи в моделируемом периоде, близка к конфигурации реальной траектории фондоотдачи частных основных производственных фондов экономики США в период 1982–2019 гг. Указаны факторы, которые остались за рамками представленной модели, но которые целесообразно учитывать при описании интерференции длинных волн экономического развития.
-
Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.
В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.
-
Укрупненная модель эколого-экономической системы на примере Республики Армения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 621-631Просмотров за год: 14. Цитирований: 7 (РИНЦ).В настоящей статье представлена укрупненная динамическая модель эколого-экономической системы Республики Армения (РА). Такая модель построена с использованием методов системной динамики, позволяющих учесть важнейшие обратные связи, относящиеся к ключевым характеристикам эколого-экономической системы. Данная модель является двухкритериальной задачей, где в качестве целевого функционала рассматриваются уровень загрязнения воздуха и валовой прибыли национальной экономики. Уровень загрязнения воздуха минимизируется за счет модернизации стационарных и мобильных источников загрязнения при одновременной максимизации валовой прибыли национальной экономики. При этом рассматриваемая эколого-экономическая система характеризуется наличием внутренних ограничений, которые должны быть учтены при принятии стратегических решений. В результате предложен системный подход, позволяющий формировать рациональные решения по развитию производственной сферы РА при минимизации воздействия на окружающую среду. С помощью предлагаемого подхода, в частности, можно формировать план по оптимальной модернизации предприятий и прогнозировать долгосрочную динамику выбросов вредных веществ в атмосферу.
-
Гипергеометрические функции в модели общего равновесия многосекторной экономики с монополистической конкуренцией
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 825-836Просмотров за год: 10.В статье показано, что базовые свойства некоторых моделей монополистической конкуренции описываются с помощью семейств гипергеометрических функций. Результаты получены построением модели общего равновесия в многосекторной экономике, производящей дифференцированное благо в $n$ высокотехнологичных секторах, в которых однопродуктовые фирмы конкурируют монополистически, используя одинаковые технологии. Однородный (традиционный) сектор характеризуется совершенной конкуренцией. Работники мотивированы найти работу в высокотехнологичных секторах, так как заработная плата там выше, однако рискуют остаться безработными. Безработица сохраняется в равновесии за счет несовершенства рынка труда. Заработная плата устанавливается фирмами в высокотехнологичных секторах в результате переговоров с работниками. Предполагается, что индивиды однородны как потребители, обладая одинаковыми предпочтениями, которые задаются сепарабельной функцией полезности общего вида. В статье найдены условия, при которых общее равновесие в построенной модели существует и единственно. Условия сформулированы в терминах эластичности замещения $\mathfrak{S}$ между разновидностями дифференцированного блага, которая усреднена по всем потребителям. Найденное равновесие симметрично относительно разновидностей дифференцированного блага. Равновесные переменные представимы в виде неявных функций, свойства которых связаны с введенной авторами эластичностью $\mathfrak{S}$. Полное аналитическое описание равновесных переменных возможно для известных частных случаев функции полезности потребителей, например в случае степенных предпочтений, которые некорректно описывают отклик экономики на изменение размера рынков. Чтобы упростить возникающие неявные функции, мы вводим функции полезности, заданные двумя однопараметрическими семействами гипергеометрических функций. Одно из семейств описывает проконкурентный, а другое — антиконкурентный отклик цен на увеличение размера экономики. Изменение параметра каждого из семейств соответствует перебору всех допустимых значений эластичности $\mathfrak{S}$. В этом смысле гипергеометрические функции исчерпывают естественные функции полезности. Установлено, что с увеличением эластичности замещения между разновидностями дифференцированного блага разница между высокотехнологичным и однородным секторами стирается. Показано, что при большом размере экономики индивиды в равновесии потребляют малое количество каждого товара, как и в случае степенных препочтений. Именно это обстоятельство позволяет приблизить используемые гипергеометрические функции суммой степенных функций в окрестности равновесных значений аргумента. Таким образом, переход от степенных функций полезности к гипергеометрическим, которые аппроксимируются суммой двух степенных функций, с одной стороны, сохраняет все возможности настройки параметров, а с другой — позволяет полностью описать эффекты, связанные с изменением размера секторов экономики.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"