Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Стабилизирующая роль структуры рыбной популяции в условиях промысла при случайных воздействиях среды обитания
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 609-620Исследуется влияние промысла на структурированную рыбную популяцию в случайным образом меняющихся условиях среды обитания. Параметры популяции соответствуют массовым видам пелагических рыб дальневосточных морей северо-западной части Тихого океана (минтай, сельдь, сардина). В различных частях Мирового океана обитают похожие виды рыб. В качестве основного признака принимается различие особей по размеру. Это легко измеряемая в промысловых условиях характеристика, она достаточно хорошо определяет основные свойства особей: возраст, половозрелость, другие морфологические и физиологические особенности. Флуктуации внешней среды оказывают существенное влияние на особей в ранних стадиях развития, во взрослом состоянии наблюдающиеся изменения во внешней среде слабо влияют на жизнедеятельность особей. Характеристики промысла выбираются оптимальными с точки зрения дохода от него. Основной управляющей характеристикой промысла являются промысловые усилия. Зависимость дохода от количества промысловых усилий выбрана квадратичной в части затрат от промысла, что соответствует экономическим представлениям о росте затрат при увеличении объемов производства. Модельное исследование показывает, что структура популяции обеспечивает повышенную стабильность популяции. В процессе роста особей и их выбывания из-за естественной смертности сглаживаются колебания плотности численности, возникающие из-за сильного влияния на особей флуктуаций среды обитания на ранних стадиях развития. Сглаживающую роль играет диффузионная составляющая процессов роста. В свою очередь, промысел обладает сглаживающим воздействием по отношению к изменениям (в том числе и стохастическим) среды обитания, существенно влияющим на обилие молоди и последующую динамику обилия популяции рыб. В сравнении с оптимальным переменным по интенсивности промыслом исследован постоянный по интенсивности режим промысла. При этом оказалось, что в динамичных условиях среды и стохастической динамике численности пополнения существует постоянное по времени промысловое усилие, по эффективности близкое к оптимальному переменному промыслу. Это означает, что постоянный или слабо меняющийся по количеству промысловых усилий промысел может оказаться весьма эффективным с точки зрения дохода.
Ключевые слова: математическая модель, популяция, размер особи, флуктуации среды обитания, оптимальный сбор урожая, рыболовство, промысловое усилие, доход.Просмотров за год: 6. Цитирований: 2 (РИНЦ). -
Математическое моделирование динамики человеческого капитала
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342Просмотров за год: 34.В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.
В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.
Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.
-
Подход к оценке динамики уровня консолидированности отраcли
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 129-140В данной статье нами предложен новый подход к анализу эконометрических параметров отрасли для уровня консолидированности отрасли. Исследование базируется на простой модели управления отраслью в соответствии с моделью из теории автоматического управления. Состояние отрасли оценивается на основе ежеквартальных эконометрических параметров получаемых в обезличенном виде от каждой компании отрасли через налогового регулятора.
Предложен подход к анализу отрасли, который не предусматривает отслеживания эконометрических показателей каждой компании, но рассматривает параметры всех компаний отрасли, как единого объекта.
Ежеквартальными эконометрическими параметрами для каждой компании отрасли являются доход, количество работников, налоги и сборы, уплачиваемые в бюджет, доход от продажи лицензионных прав на программное обеспечение.
Был использован ABC-метод анализа модифицированный до ABCD-метода (D — компании с нулевым вкладом в соответствующую отраслевую метрику) для различных отраслевых метрик. Были построены Парето-кривые для множества эконометрических параметров отрасли.
Для оценки степени монополизированности отрасли был рассчитан индекс Херфиндаля – Хиршмана (ИХХ) для наиболее чувствительных метрик отрасли. С использованием ИХХ было показано что пандемия COVID-19 не привела к существенным изменениям уровня монополизированности российской ИТ-отрасли.
В качестве наиболее наглядного подхода к отображению отрасли было предложено использовать диаграмму рассеяния в сочетании с присвоением компаниям отрасли цвета в соответствии с их позицией на Парето-кривой. Также продемонстрирован эффект влияния процедуры аккредитации путем отображения отрасли в формате диаграммы рассеяния c красно-черным отображением аккредитованных и неаккредитованных компаний, соответственно.
И заключительным результатом, отраженным в статье является предложение использования процедуры сквозной идентификации при организации цепочек поставок программного обеспечения с целью контроля структуры рынка программного обеспечения. Этот подход позволяет избежать множественного учета при продаже лицензий на программное обеспечение в рамках цепочек поставок.
Результаты работы могут быть положены в основу дальнейшего анализа ИТ-отрасли и перехода к агентному моделированию отрасли.
-
Модель для анализа неравенства доходов на основе конечной функциональной последовательности (проблемы адекватности и применения)
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 675-689Рассмотрены вопросы адекватности разработанной ранее автором модели для анализа неравенства доходов, основанной на эмпирически подтвержденной гипотезе о том, что относительные (по отношению к доходу наиболее богатой группы) величины дохода 20% групп населения в совокупном доходе могут быть приближенно представлены в виде конечной функциональной последовательности, каждый член которой зависит от одного параметра — специально определенного показателя неравенства. Показано, что в дополнение к существующим методам анализа неравенства с помощью этой модели можно определить зависимость доли дохода 20%, 10% и более мелких групп населения от уровня неравенства, выявить особенности их изменения при росте неравенства, рассчитать уровень неравенства при известных соотношениях между доходами различных групп населения и др.
В работе приводится более подробное подтверждение адекватности предложенной модели по сравнению с полученными ранее результатами статистического анализа эмпирических данных о распределении доходов между 20%- и 10%-ми группами населения. Оно основано на анализе определенных соотношений между величинами квинтилей и децилей согласно предлагаемой модели. Проверка этих соотношений проведена по совокупности данных для большого числа стран. Полученные оценки подтверждают достаточно высокую точность модели.
Приведены данные, которые подтверждают возможность применения модели для анализа зависимости распределения доходов по группам населения от уровня неравенства, а также для оценки показателя неравенства для вариантов соотношений доходов между различными группами, в том числе когда доход 20% наиболее богатых равен доходу 60% бедных, доходу 40% среднего класса или доходу 80% остального населения, а также когда доход 10% самых богатых равен доходу 40%, 50% или 60% бедных, доходу различных групп среднего класса и др., а также для случаев, когда распределение доходов подчиняется гармоническим пропорциям и когда квинтили и децили, соответствующие среднему классу, достигают максимума. Показано, что доли дохода наиболее богатых групп среднего класса относительно стабильны и имеют максимум при определенных уровнях неравенства.
Полученные с помощью модели результаты могут быть использованы для определения нормативов при разработке политики поэтапного повышении уровня прогрессивного налогообложения с целью перехода к уровню неравенства, характерному для стран с социально ориентированной экономикой.
Ключевые слова: неравенство, доход, модель, распределение, показатель неравенства, адекватность, последовательность. -
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
-
Экспериментальное исследование распределения расходов граждан РФ на новые автомобили и их соответствие доходам
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 621-629Цитирований: 3 (РИНЦ).Экспериментально исследуется вопрос о распределении расходов граждан в современной России. Репрезентативной группой приобретаемых товаров были выбраны, как и ранее, новые автомобили. Результаты анализа продаж новых автомобилей за 2007–2009 годы представлены ниже. Основное «тело» плотности вероятности найти определенное количество автомобилей в зависимости от их цены, начиная с некоторой начальной цены вплоть до ~ 60 k$, является экспоненциальным распределением. Обнаруженной особенностью распределения (в отличие от 2003–2005 гг.) было наличие минимальной цены. Для дорогих автомобилей («хвост» распределения) асимптотика есть распределение Парето с показателем степени гиперболы несколько большим, чем измеренный ранее для 2003–2005 гг. Результаты оказались аналогичны прямым измерениям распределения налоговых деклараций по их величине, поданных в США в 2004 г., где также наблюдалось экспоненциальное распределение доходов граждан, начиная с некоторого минимального, с некоторой асимптотикой в виде распределения Парето.
-
Описание процессов в ансамблях фотосинтетических реакционных центров с помощью кинетической модели типа Монте-Карло
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1207-1221Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.
В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.
-
Моделирование численности занятого, безработного и экономически неактивного населения Дальнего Востока России
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 251-264Исследования кризисной социально-демографической ситуации на Дальнем Востоке требуют не только применения традиционных статистических методов, но и концептуального анализа возможных сценариев развития, основанного на принципах синергетики. Статья посвящена моделированию численности занятого, безработного и экономически неактивного населения Дальнего Востока на основе нелинейных дифференциальных уравнений с постоянными коэффициентами. Рассмотрена базовая нелинейная математическая модель, основанная на принципе парных взаимодействий и являющаяся частным случаем модели борьбы условных информаций по Д.С. Чернавскому. Методом наименьших квадратов, адаптированным для данной модели, найдены точечные оценки параметров, характеризующих динамику численностей занятых, безработных и экономически неактивного населения Дальнего Востока России за 2000–2017 гг. Средняя ошибка аппроксимации составила не более 5.17 %. Полученная точечная оценка параметров в асимптотическом случае соответствует неустойчивому фокусу (расходящимся колебаниям оцениваемых показателей численности), что свидетельствует, в аспекте проведенного моделирования, о постепенном увеличении диспропорций между рассматриваемыми группами населения и обвале их динамики в инерционном сценарии. Обнаружено, что в окрестности инерционного сценария формируется нерегулярная хаотическая динамика, что усложняет возможность эффективного управления. Установлено, что изменение лишь одного параметра в модели (в частности, миграционного) при отсутствии структурных социально-экономических сдвигов может лишь отсрочить обвал динамики в долгосрочной перспективе либо привести к появлению сложно предсказуемых режимов (хаоса). Найдены другие оценки параметров модели, соответствующие устойчивой динамике (устойчивому фокусу), которая неплохо согласуется с реальной динамикой численности рассматриваемых групп населения. Согласно исследованной математической модели бифуркационными являются параметры, характеризующие темпы оттока трудоспособного населения, рождаемость (омоложение населения), а также темп миграционного притока безработных. Показано, что переход к устойчивому сценарию возможен при одновременном воздействии на несколько этих параметров, что требует сложного комплекса мероприятий по закреплению населения Дальнего Востока России и роста уровня их доходов, в пересчете на компенсацию инфраструктурной разреженности. Для разработки конкретных мер в рамках государственной политики необходимы дальнейшие экономические и социологические исследования.
-
Оптимальное управление вложением средств банка как фактор экономической стабильности
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 959-967Просмотров за год: 5.В работе представлена модель пополнения банковской ликвидности собственными средствами банков. Дано методологическое обоснование необходимости создания банковских стабилизационных фондов для покрытия убытков в период кризиса в экономике. Приводится эконометрический вывод уравнений описывающих поведение банка в финансовой и операционной деятельности. В соответствии с поставленной целью создания стабилизационного фонда вводится критерий оптимальности осуществляемого управления. На основе полученных уравнений поведения банка, методом динамического программирования выводится вектор оптимальных управлений.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"