Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'численный анализ':
Найдено статей: 198
  1. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 209-212
  2. Борина М.Ю., Полежаев А.А.
    О механизме переключения стоячей волны в бегущую, сопровождающегося делением длины волны пополам
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 673-679

    В данной работе предложен возможный механизм перехода из режима стоячих волн с длиной волны λSW в режим бегущих волн с половинной длиной волны: λTW ≅λSW / 2. Такой переход был обнаружен в пространственно распределенной реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT [Kaminaga el al., 2005]. Задача решалась в пространственно одномерном случае с использованием аппарата амплитудных уравнений типа Гинзбурга–Ландау. Показано, что переход возможен при выполнении определенных условий. Выведены условия на силы связи между взаимодействующими модами, при выполнении которых в модели реализуется сценарий перехода от стоячей к бегущей волне половинного периода, наблюдаемый в эксперименте. Результат теоретического анализа подтверждается численным моделированием.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  3. Малинецкий Г.Г., Фаллер Д.С.
    Переход к хаосу в системах «реакция–диффузия». Простейшие модели
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12

    В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  4. От редакции
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 877-878
    Просмотров за год: 3.
  5. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  6. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 719-720
    Просмотров за год: 1.
  7. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 831-832
    Просмотров за год: 2.
  8. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Просмотров за год: 2.
  9. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Просмотров за год: 6.
  10. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.