Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное решение нелинейныхинтегра льных уравнений второго рода типа Урысона методом последовательныхквадра тур с использованием погруженной схемы Дормана–Принса 5(4)
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 275-300Представлен итерационный алгоритм, который численно решает нелинейные одномерные несингулярные интегральные уравнения Фредгольма и Вольтерры второго рода типа Урысона. Показано, что метод последовательных приближений Пикара может быть использован при численном решении такого типа уравнений. Сходимость числовой схемы гарантируется теоремами о неподвижной точке. При этом квадратурный алгоритм основан на явной форме встроенного правила Рунге–Кутты пятого порядка с адаптивным контролем размера шага. Возможность контроля локальных ошибок квадратур позволяет создавать очень точные автоматические числовые схемы и значительно уменьшить основной недостаток итераций Пикара, а именно чрезвычайно большое количество вычислений с увеличением глубины рекурсии. Наш алгоритм организован так, что по сравнению с большинством подходов нелинейность интегральных уравнений не вызывает каких-либо дополнительных вычислительных трудностей, его очень просто применять и реализовывать в программе. Наш алгоритм демонстрирует практически важные черты универсальности. Во-первых, следует подчеркнуть, что метод столь же прост в применении к нелинейным, как и к линейным уравнениям типа Фредгольма и Вольтерры. Во-вторых, алгоритм снабжен правилами останова, по которым вычисления могут в значительной степени контролироваться автоматически. Представлен компактный C++-код описанного алгоритма. Реализация нашей программы является самодостаточной: она не требует никаких предварительных вычислений, никаких внешних функций и библиотек и не требует дополнительной памяти. Приведены числовые примеры, показывающие применимость, эффективность, надежность и точность предложенного подхода.
-
Математическое моделирование магнитной системы методом регуляризации по А. Н. Тихонову
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 165-175В данной работе решается задача поиска конструкции магнитной системы для создания магнитного поля с требуемыми характеристиками в заданной области. На основе анализа математической модели магнитной системы предлагается достаточно общий подход к решению нелинейной обратной задачи, которая описывается уравнением Фредгольма H(z) = ∫SIJ(s)G(z, s)ds, z ∈ S H, s ∈ S I . Необходимо определить распределение плотности тока J(s), а также расстановку источников тока для создания поля H(z). В работе предлагается метод решения этих задачс помощью регуляризованных итерационных процессов. На примере конкретной магнитной системы проводится численное исследование влияния различных факторов на характер создаваемого магнитного поля.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"