Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'транспортный поток':
Найдено статей: 37
  1. Котлярова Е.В., Северилов П.А., Ивченков Я.П., Мокров П.В., Чеканов М.О., Гасникова Е.В., Шароватова Ю.И.
    Ускорение работы двухстадийной модели равновесного распределения потоков по сети
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 343-355

    В работе приведены возможные улучшения двухстадийной модели равновесного распределения транспортных потоков, повышающие качество детализации моделирования и скорость вычисления алгоритмов. Модель состоит из двух блоков, первый блок — модель расчета матрицы корреспонденций, второй блок — модель равновесного распределения транспортных потоков по путям. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Более подробно теория и эксперименты по данной модели были описаны в предыдущих работах авторов. В этой статье в первую очередь рассмотрена возможность сокращения вычислительного времени алгоритма расчета кратчайших путей (в модели стабильной динамики, равновесно распределяющей потоки). В исходном варианте эта задача была выполнена с помощью алгоритма Дийкстры, но, так как после каждой итерации блока распределения транспортных потоков, время, требующееся для прохода по ребру, изменяется не на всех ребрах (и если изменяется, то очень незначительно), во многом этот алгоритм был избыточен. Поэтому были проведены эксперименты с более новым методом, учитывающим подобные особенности, и приведен краткий обзор других ускоряющих подходов для будущих исследований. Эксперименты показали, что в некоторых случаях использование выбранного T-SWSF-алгоритма действительно сокращает вычислительное время. Во вторую очередь в блоке восстановления матрицы корреспонденций алгоритм Синхорна был заменен на алгоритм ускоренного Синхорна (или AAM-алгоритм), что, к сожалению, не показало ожидаемых результатов, расчетное время не изменилось. Инак онец, в третьем и финальном разделе приведена визуализация результатов экспериментов по добавлению платных дорог в двухстадийную модель, что помогло сократить количество перегруженных ребер в сети. Также во введении кратко описана мотивация данных исследований, приведено описание работы двухстадийной модели, а также на маленьком примере с двумя городами разобрано, как с ее помощью выполняется поиск равновесия.

  2. Сорокин К.Э., Аксёнов А.А., Жлуктов С.В., Бабулин А.А., Шевяков В.И.
    Методика расчета обледенения воздушных судов в широком диапазоне климатических и скоростных параметров. Применение в рамках норм летной годности НЛГ-25
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 957-978

    Сертификация самолетов транспортной категории для эксплуатации в условияхо бледенения в России ранее проводилась в рамках требований приложения С к «Авиационным правилам» (АП-25). Во введенном в действие с 2023 года, взамен АП-25, документе «Нормы летной годности» (НЛГ-25) добавлено и приложение О. Отличительной особенностью приложения О является необходимость проведения расчетов в условиях большой водности и с крупными каплями воды (500 мкм и более). При таких параметрах дисперсного потока определяющими становятся такие физические процессы, как срыв и разбрызгивание пленки воды при попадании в нее крупных капель. Поток дисперсной среды в такиху словиях является существенно полидисперсным. В данной работе описываются модификации методики расчета обледенения самолетов IceVision, реализованной на базе программного комплекса FlowVision, необходимые для проведения расчетов обледенения самолетов в рамках приложения О.

    Главное отличие методики IceVision от известных подходов заключается в использовании технологии Volume of fluid (VOF — объем жидкости в ячейке) для отслеживания изменения формы льда. Внешнее обтекание самолета рассчитывается одновременно с нарастанием льда и его прогревом. Лед присутствует в расчетной области явно, в нем решается уравнение теплопереноса. В отличие от лагранжевых подходов, в IceVision эйлерова расчетная сетка не перестраивается полностью. Изменение объема льда сопровождается только модификацией ячеек сетки, через которые проходит контактная поверхность.

    В версии IceVision 2.0 реализован учет срыва водяной пленки, а также отскока и разбрызгивания падающих капель на поверхности самолета и льда. Диаметр вторичных капель рассчитывается с использованием известных эмпирических корреляций. Скорость течения пленки воды по поверхности определяется с учетом действия аэродинамических сил, силы тяжести, градиента гидростатического давления и силы поверхностного натяжения. Результатом учета поверхностного натяжения является эффект поперечного стягивания пленки, приводящий к образованию потоков воды в форме ручейков и ледяных отложений в виде гребнеобразных наростов. На поверхности льда выполняется балансовое соотношение, учитывающее энергию падающих капель, теплообмен между льдом и воздухом, теплоту кристаллизации, испарения, сублимации и конденсации. В работе приводятся результаты решения тестовых и модельных расчетных задач, демонстрирующие эффективность методики IceVision и достоверность полученных результатов.

  3. Шепелев В.Д., Костюченков Н.В., Шепелев С.Д., Алиева А.А., Макарова И.В., Буйвол П.А., Парсин Г.А.
    Разработка интеллектуальной системы определения объемно-весовых характеристик груза
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 437-450

    Промышленная обработка изображений или «машинное зрение» в настоящее время является ключевой технологией во многих отраслях, поскольку эта технология может использоваться для оптимизации различных процессов. Целью настоящей работы является создание программно-аппаратного комплекса измерения габаритно-весовых характеристик груза на базе интеллектуальной системы, основанной на нейросетевых способах идентификации, позволяющих преодолеть технологические ограничения аналогичных комплексов, реализованных на ультразвуковых и инфракрасных измерительных датчиках. Разрабатываемый комплекс будет производить измерения грузов без ограничения на объемные и весовые характеристики груза, который необходимо тарифицировать и сортировать в рамках работы складских комплексов. В состав системы будет входить интеллектуальная компьютерная программа, определяющая объемно-весовые характеристики груза с использованием технологии машинного зрения и экспериментальный образец стенда измерения объёма и веса груза.

    Проведен анализ исследований, посвященных решению аналогичных задач. Отмечено, что недостатком изученных способов являются очень высокие требования к расположению камеры, а также необходимость ручной работы при вычислении размеров, автоматизировать которую не представляется возможным без существенных доработок. В процессе работы исследованы различные способы распознавания объектов на изображениях с целью проведения предметной фильтрации по наличию груза и измерения его габаритных размеров. Получены удовлетворительные результаты при применении камер, сочетающих в себе как оптический способ захвата изображений, так и инфракрасные датчики. В результате работы разработана компьютерная программа, позволяющая захватывать непрерывный поток с видеокамер Intel RealSense с последующим извлечением из обозначенной области трехмерный объект и вычислять габаритные размеры объекта. На данном этапе выполнено: проведен анализ методик компьютерного зрения; разработан алгоритм для реализации задачи автоматического измерения грузов с использованием специальных камер; разработано программное обеспечение, позволяющее получать габаритные размеры объектов в автоматическом режиме.

    Данная разработка по завершении работы может применяться как готовое решение для транспортных компаний, логистических центров, складов крупных производственных и торговых предприятий.

  4. Софронова Е.А., Дивеев А.И., Казарян Д.Э., Константинов С.В., Дарьина А.Н., Селиверстов Я.А., Баскин Л.А.
    Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159

    Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.

  5. Хрущев С.С., Фурсова П.В., Плюснина Т.Ю., Ризниченко Г.Ю., Рубин А.Б.
    Анализ скорости электронного транспорта через фотосинтетический цитохромный $b_6 f$ -комплекс
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 997-1022

    Рассматривается основанный на методах линейной алгебры подход к анализу скорости электронного транспорта через цитохромный $b_6 f$-комплекс. В предложенном подходе зависимость квазистационарного потока электронов через комплекс от степени восстановленности пулов мобильных переносчиков электрона выступает в качестве функции отклика, характеризующей этот процесс. Разработано программное обеспечение на языке программирования Python, позволяющее построить основное кинетическое уравнение для комплекса по схеме элементарных реакций и вычислить квазистационарные скорости электронного транспорта через комплекс и динамику их изменения в ходе переходного процесса. Вычисления проводятся в многопоточном режиме, что позволяет эффективно использовать ресурсы современных вычислительных систем и за сравнительно небольшое время получать данные о функционировании комплекса в широком диапазоне параметров. Предложенный подход может быть легко адаптирован для анализа электронного транспорта в других компонентах фотосинтетической и дыхательной электрон-транспортной цепи, а также других процессов в сложных мультиферментных комплексах, содержащих несколько реакционных центров. Для параметризации модели цитохромного $b_6 f$-комплекса использованы данные криоэлектронной микроскопии и окислительно-восстановительного титрования. Получены зависимости квазистационарной скорости восстановления пластоцианина и окисления пластохинона от степени восстановленности пулов мобильных переносчиков электрона и проанализирована динамика изменения скорости в ответ на изменение редокс-состояния пула пластохинонов. Результаты моделирования находятся в хорошем согласовании с имеющимися экспериментальными данными.

  6. Юмаганов А.С., Агафонов А.А., Мясников В.В.
    Адаптивное управление сигналами светофоров на основе обучения с подкреплением, инвариантное к конфигурации светофорного объекта
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1253-1269

    В работе представлен метод адаптивного управления сигналами светофоров, инвариантный к конфигурации светофорного объекта. Предложенный метод использует одну модель нейронной сети для управления светофорами различных конфигураций, отличающихся как по числу контролируемых полос движения, так и по используемому набору фаз. Для описания пространства состояний используется как динамическая информация о состоянии транспортного потока, так и статические данные о конфигурации контролируемого перекрестка. Для повышения скорости обучения модели предлагается использовать эксперта, предоставляющего дополнительные данные для обучения модели. В качестве эксперта используется метод адаптивного управления, основанный на максимизации взвешенного потока транспортных средств через перекресток. Экспериментальные исследования разработанного метода, проведенные в системе микроскопического моделирования движения транспортных средств, подтвердили его работоспособность и эффективность. Была показана возможность применения разработанного метода в сценарии моделирования, не используемом в процессе обучения. Представлено сравнение предложенного метода с другими известными решениями задачи управления светофорным объектом, в том числе с методом, используемым в качестве эксперта. В большинстве сценариев разработанный метод показал лучший результат по критериям среднего времени движения и среднего времени ожидания. Преимущество над методом, используемым в качестве эксперта, в зависимости от исследуемого сценария составило от 2% до 12% по критерию среднего времени ожидания транспортных средств и от 1% до 7% по критерию среднего времени движения.

  7. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.