Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Обнаружение медленно движущихся или неожиданно возникающих неподвижных «бутылочных горлышек» в транспортномпо токе на основе теории трех фаз
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 319-363Разработан метод обнаружения неожиданно возникающих «бутылочных горлышек», которые появляются в транспортном потоке внезапно и неожиданно для водителей. Такие неожиданно возникающие бутылочные горлышки могут двигаться, если они вызваны медленно движущейся автомашиной (тип МВ), или же оставаться неподвижными, если они вызваны внезапно остановившейся автомашиной (тип SV), например, в результате аварии. На основе численного моделирования стохастической микроскопической модели транспортного потока в рамках теории трех фаз Кернера показано, что даже при использовании небольшого процента «зондирующих» (измеряющих) автомашин (FCD), случайным образом распределенных в транспортном потоке, возможно надежное обнаружение неожиданно возникающих бутылочных горлышек. Найдено, что временная зависимость вероятности прогноза бутылочных горлышек типа МВ или SV, а также точность определения их положения существенно зависят от последовательности фазовых переходов от свободного (F) к синхронизованному (S) транспортному потоку (F→S-переход) и обратных фазовых переходов (S→F-переход), а также от колебаний скорости автомашин в синхронизованном потоке вблизи бутылочного горлышка. Предлагаемая численная методика позволяет как обнаруживать неожиданно возникшее бутылочное горлышко на автомагистрали, так и различать, связано ли такое бутылочное горлышко с медленно движущейся автомашиной (МВ) или же с внезапно остановившейся автомашиной (SV).
-
Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.
-
Модификации алгоритма Frank–Wolfe в задаче поиска равновесного распределения транспортных потоков
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 53-68В работе приведены различные модификации алгоритма Frank–Wolfe для задачи поиска равновесного распределения потоков. В качестве модели для экспериментов используется модель Бекмана. В этой статье в первую очередь уделяется внимание выбору направления базового шага алгоритма Frank–Wolfe (FW). Будут представлены алгоритмы: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank–Wolfe (FFW). Каждой модификации соответствуют различные подходы к выбору этого направления. Некоторые из этих модификаций описаны в предыдущих работах авторов. В данной статье будут предложены алгоритмы N-conjugate Frank–Wolfe (NFW) и Weighted Fukushima Frank–Wolfe (WFFW). Эти алгоритмы являются некоторым идейным продолжением алгоритмов BFW и FFW. Таким образом, если первый алгоритм использовал на каждой итерации два последних направления предыдущих итераций для выбора следующего направления, сопряженного к ним, то предложенный алгоритм NFW использует $N$ предыдущих направлений. В случае же Fukushima Frank –Wolfe в качестве следующего направления берется среднее от нескольких предыдущих направлений. Соответственно этому алгоритму предложена модификация WFFW, использующая экспоненциальное сглаживание по предыдущим направлениям. Для сравнительного анализа были проведены эксперименты с различными модификациями на нескольких наборах данных, представляющих городские структуры и взятых из общедоступных источников. За метрику качества была взята величина относительного зазора. Результаты экспериментов показали преимущество алгоритмов, использующих предыдущие направления для выбора шага, перед классическим алгоритмом Frank–Wolfe. Кроме того, было выявлено улучшение эффективности при использовании более двух сопряженных направлений. Например, на многих датасетах модификация 3-conjugate FW сходилась наилучшим образом. Кроме того, предложенная модификация WFFW зачастую обгоняла FFW и CFW, хотя и проигрывала модификациям NFW.
-
Численное исследование транспортных потоков на основе гидродинамических моделей
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 389-412Просмотров за год: 7. Цитирований: 7 (РИНЦ).Целью данной работы является обобщение макроскопических гидродинамических моделей, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным наблюдаемым условиям уравнения состояния — зависимости давления от плотности транспортного потока, определяемого по экспериментальным данным (возможно, с использованием параметрических решений модельных уравнений). Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства исследуемой феноменологической
модели. -
Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.
-
Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345Просмотров за год: 28.В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.
-
Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.
Ключевые слова: транспортное моделирование, фотовидеофиксация, прогнозирование транспортного потока. -
Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, энтропийная модель. -
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Просмотров за год: 36.Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
-
Обоснование связи модели Бэкмана с вырождающимися функциями затрат с моделью стабильной динамики
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 335-342С 50-х годов XX века транспортное моделирование крупных мегаполисов стало усиленно развиваться. Появились первые модели равновесного распределения потоков по путям. Наиболее популярной (и использующейся до сих пор) моделью была модель Бэкмана и др. 1955 г. В основу этой модели положены два принципа Вардропа. На современном теоретико-игровом языке можно кратко описать суть модели как поиск равновесия Нэша в популяционной игре загрузки, в которой потери игроков (водителей) рассчитываются исходя из выбранного пути и загрузках на этом пути, при фиксированных корреспонденциях. Загрузки (затраты) на пути рассчитываются как сумма затрат на различных участках дороги (ребрах графа транспортной сети). Затраты на ребре (время проезда по ребру) определяется величиной потока автомобилей на этом ребре. Поток на ребре, в свою очередь, определяется суммой потоков по всем путям, проходящим через заданное ребро. Таким образом, затраты на проезд по пути определяются не только выбором пути, но и тем, какие пути выбрали остальные водители. Таким образом, мы находимся в стандартной теоретико-игровой постановке. Специфика формирования функций затрат позволяет сводить поиск равновесия к решению задачи оптимизации (игра потенциальная). Эта задача оптимизации будет выпуклой, если функции затрат монотонно неубывающие. Собственно, различные предположения о функциях затрат формируют различные модели. Наиболее популярной моделью является модель с функцией затрат BPR. Такие функции используются при расчетах реальных городов повсеместно. Однако в начале XXI века Ю. Е. Нестеровым и А. де Пальмой было показано, что модели типа Бэкмана имеют серьезные недостатки. Эти недостатки можно исправить, используя модель, которую авторы назвали моделью стабильной динамики. Поиск равновесия в такой модели также сводится к задаче оптимизации. Точнее, даже задаче линейного программирования. В 2013 г. А. В. Гасниковым было обнаружено, что модель стабильной ди- намики может быть получена предельным переходом, связанным с поведением функции затрат, из модели Бэкмана. Однако обоснование упомянутого предельного перехода было сделано в нескольких важных (для практики), но все- таки частных случаях. В общем случае вопрос о возможности такого предельного перехода, насколько нам известно, остается открытым. Данная работа закрывает данный зазор. В статье в общем случае приводится обоснование возможности отмеченного предельного перехода (когда функция затрат на проезд по ребру как функция потока по ребру вырождается в функцию, равную постоянным затратам до достижения пропускной способности, и равна плюс бесконечности, при превышении пропускной способности).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"