Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное моделирование горения этилена в сверхзвуковом потоке воздуха
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 75-86Просмотров за год: 8. Цитирований: 3 (РИНЦ).В представленной работе обсуждается возможность упрощенного трехмерного нестационарного моделирования процесса плазменно-стимулированного горения газообразного топлива в сверхзвуковом потоке воздуха. Расчеты проводились в программном комплексе FlowVision. В работе выполнен анализ геометрии эксперимента и сделан вывод о ее существенной трехмерности, связанной как с дискретностью подачи топлива в поток, так и с наличием локализованных плазменных образований. Предложен вариант упрощения расчетной геометрии, основанный на симметрии аэродинамического канала и периодичности пространственных неоднородностей. Выполнено тестирование модифицированной $k–\varepsilon$ модели турбулентности FlowVision (KEFV) в условиях сверхзвукового потока. В этих расчетах в области источников тепла и инжекции топлива использовалась подробная сетка без пристеночных функций, а на удаленных от ключевой области поверхностях пристеночные функции были включены. Это позволило существенно уменьшить количество ячеек расчетной сетки. Сложная задача моделирования воспламенения углеводородного топлива при воздействии плазмы была существенно упрощена путем представления плазменных образований как источников тепла и использования одной брутто-реакции для описания горения топлива. На базе геометрии аэродинамического стенда ИАДТ-50 ОИВТ РАН с помощью моделирования в программном комплексе ПК FlowVision проведены калибровка и параметрическая оптимизация подачи газообразного топлива в сверхзвуковой поток. Продемонстрировано хорошее совпадение экспериментальной и синтетической теневой картины потока при инжекции топлива. Проведено моделирование потока для геометрии камеры сгорания Т131 ЦАГИ с инжекцией топлива и генерацией плазмы. В результате моделирования для заданного набора параметров продемонстрировано воспламенение топлива, что совпало с результатами эксперимента. Отмечена важность адаптации расчетной сетки с повышением пространственного разрешения в области объемных источников тепла, моделирующих зону электрического разряда. Достигнуто удовлетворительное качественное совпадение распределений давления, полученных в моделировании и эксперименте.
-
Математическое моделирование неньютоновского потока крови в дуге аорты
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 259-269Целью проведенного исследования была разработка математической модели пульсирующего течения крови по участку аорты, включающему восходящий отдел, дугу аорты с ее ответвлениями и верхнюю часть нисходящего отдела. Поскольку при прохождении пульсовой волны деформации этой наиболее твердой части аорты малы, то при построении механической модели ее стенки считались абсолютно твердыми. В статье приводится описание внутренней структуры крови и ряда внутриструктурных эффектов. Этот анализ показывает, что кровь, которая по существу является суспензией, можно рассматривать только как неньютоновскую жидкость. Кроме того, кровь можно считать жидкостью только в кровеносных сосудах, диаметр которых намного больше характерного размера клеток крови и их агрегатных образований. В качестве неньютоновской жидкости была выбрана вязкая жидкость со степенным законом связи напряжения со скоростью деформации. Этот закон позволяет описывать поведение не только жидкостей, но и суспензий. При постановке граничного условия на входе в аорту, отражающего пульсирующий характер течения крови, было решено не ограничиваться заданием совокупного потока крови, который не дает представления о пространственном распределении скорости по поперечному сечению. В связи с этим было предложено моделировать огибающую поверхность этого пространственного распределения частью параболоида вращения с фиксированным радиусом основания и высотой, которая меняется во времени от нуля до максимального значения скорости. Для граничного условия на стенке сосуда предлагается использовать условие полупроскальзывания. Это связано с тем, что клетки крови, в силу своих электрохимических свойств, не прилипают к внутреннему слою сосуда. На внешних концах аорты и ее ответвлений задавалась величина давления. Для выполнения вычислений была построена геометрическая модель рассматриваемой части аорты с ответвлениями, на которую была нанесена тетраэдальная сетка с общим числом элементов 9810. Вычисления производились методом конечных элементов с шагом по времени 0.01 с с использованием пакета ABAQUS. В результате было получено распределение скоростей и давления на каждом шаге по времени. В областях ветвления сосудов было обнаружено вре́менное наличие вихрей и обратных течений. Они зарождались через 0.47 с от начала пульсового цикла и исчезали спустя 0.14 с.
Ключевые слова: математическое моделирование, течение крови, дуга аорты, распределение скорости и напряжения.Просмотров за год: 13. -
Математическое моделирование теплофизических процессов в стенке кисты Бейкера, при нагреве внутрикистозной жидкости лазерным излучением длиной волны 1.47 мкм
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 103-112Просмотров за год: 21. Цитирований: 2 (РИНЦ).Работа посвящена теоретическому изучению величины деструктивного влияния на нормальные ткани организма инфракрасным излучением, выходящим за пределы обрабатываемого патологического очага. Такая ситуация возможна при сверхдлительном воздействии прямого лазерного излучения на биоткани. Решением этой проблемы может служить равномерное распределение тепла внутри объема через опосредованное нагревание жидкости, что способствует минимальному повреждению перифокальных структур. Представлена нестационарная теплофизическая модель процесса распространения тепла в биотканях, позволяющая проводить исследования передачи энергии от внутреннего жидкого содержимого кисты Бейкера, нагреваемого инфракрасным лазерным излучением заданной удельной мощности, через определенную толщину ее стенки к окружающим биологическим тканям. Расчет пространственно-временного распределения температуры в стенке кисты и окружающей жировой ткани осуществляется конечно-разностным методом. Время эффективного воздействия температуры на всю толщину стенки кисты оценивалось достижением 55 °С на ее наружной поверхности. Безопасность процедуры обеспечивает длительность экспозиции данной величины не более 10 секунд.
В результате проведенных вычислений установлено, что имеются несколько режимов работы хирургического лазера, соответствующих всем требованиям безопасности при одновременной эффективности процедуры. Локальная односторонняя гипертермия синовиальной оболочки и последующая коагуляция всей толщины стенки за счет переноса тепла способствуют ликвидации полостного новообразования подколенной области. При ее толщине 3 мм удовлетворительным является режим нагрева, при котором время воздействия длится около 200 секунд, а удельная мощность лазерного излучения во внутренней среде жидкостного содержимого кисты Бейкера составляет примерно 1 Вт/г.
-
Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850Просмотров за год: 32.В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).
Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.
-
Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151Просмотров за год: 40. Цитирований: 2 (РИНЦ).Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.
-
Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.
Ключевые слова: отображение, возбудимая клетка, осцилляторная клетка, синхронизация, пространственно-временная динамика.Цитирований: 3 (РИНЦ). -
Моделирование погрешностей измерений диаметра широкоапертурного лазерного пучка c плоским профилем
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 113-124Работа посвящена моделированию инструментальных погрешностей измерения диаметра лазерного пучка при использовании метода на основе ламбертовски рассеивающего на просвет экрана. В качестве модели пучка использовалось суперлоренцево распределение. Для определения влияния на погрешность измерения каждого из параметров проводились вычислительные эксперименты, результаты которых аппроксимировались аналитическими функциями. Были получены зависимости погрешностей от относительного размера пучка, пространственной неравномерности пропускания экрана, дисторсии объектива, физического виньетирования, наклона пучка, пространственного разрешения матрицы, разрядности АЦП-камеры. Показано, что погрешность может быть менее 1 %.
Ключевые слова: лазерный пучок, диаметр лазерного пучка, моделирование погрешностей, суперлоренцево распределение.Просмотров за год: 3. Цитирований: 3 (РИНЦ). -
Метод расчета электрических свойств насыщенных горных пород, учитывающий поверхностную проводимость
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1081-1088Просмотров за год: 4. Цитирований: 1 (РИНЦ).Предложен новый эффективный численный метод расчета электрических свойств горных пород с двухфазным насыщением типа «нефть–вода». Метод позволяет учитывать влияние поверхностной проводимости двойных электрических слоев, возникающих на контакте скелета породы с водным раствором в поровом пространстве. В основе метода лежит задача нахождения распределения электрического потенциала в трехмерной цифровой модели пористой среды высокого разрешения. Цифровая модель воспроизводит пространственную структуру поровых каналов на микроуровне и содержит элементы сетки объемного и поверхностного типов. Результаты расчетов показывают важность учета поверхностной проводимости.
-
Математическое моделирование распространения тромбина в процессе свертывания крови
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.
Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.
Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.
Ключевые слова: бегущие волны, свертывание крови.Просмотров за год: 10. Цитирований: 1 (РИНЦ). -
Методы и задачи кинетического подхода для моделирования биологических структур
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 851-866Биологическая структура рассматривается как открытая неравновесная система, свойства которой могут быть описаны на основе кинетических уравнений. Ставятся новые задачи с неравновесными граничными условиями на границе, причем неравновесное состояние (распределение) преобразуется постепенно в равновесное состояние вниз по течению. Область пространственной неоднородности имеет масштаб, зависящий от скорости переноса вещества в открытой системе и характерного времени метаболизма. В предлагаемом приближении внутренняя энергия движения молекул много меньше энергии поступательного движения; в других терминах: кинетическая энергия средней скорости крови существенно выше, чем энергия хаотического движения частиц в крови. Задача о релаксации в пространстве моделирует живую систему, поскольку сопоставляет области термодинамической неравновесности и неоднородности. Поток энтропии в изучаемой системе уменьшается вниз по потоку, что соответствует общим идеям Э. Шрёдингера о том, что живая система «питается» негэнтропией. Вводится величина, определяющая сложность биосистемы, — это разность между величинами неравновесной кинетической энтропии и равновесной энтропией в каждой пространственной точке, затем проинтегрированная по всему пространству. Решения задач о пространственной релаксации позволяют высказать суждение об оценке размера биосистем в целом как областей неравновесности. Результаты сравниваются с эмпирическими данными, в частности для млекопитающих (размеры животных тем больше, чем меньше удельная энергия метаболизма). Что воспроизводится в предлагаемой кинетической модели, поскольку размеры неравновесной области больше в той системе, где меньше скорость реакции, или в терминах кинетического подхода – чем больше время релаксации характерного взаимодействия между молекулами. Подход применяется для обсуждения характеристик и отдельного органа живой системы, а именно зеленого листа. Рассматриваются проблемы старения как деградации открытой неравновесной системы. Аналогия связана со структурой: для замкнутой системы происходит стремление к равновесию структуры для одних и тех же молекул, в открытой системе происходит переход к равновесию частиц, которые меняются из-за метаболизма. Соответственно, выделяются два существенно различных масштаба времени, отношение которых является приблизительно постоянным для различных видов животных. В предположении существования двух этих временных шкал кинетическое уравнение расщепляется на два уравнения, описывающих метаболическую (стационарную) и «деградационную» (нестационарную) части процесса.
Ключевые слова: неравновесная открытая система, энтропия, кинетические уравнения, старение биосистем.Просмотров за год: 31.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"