Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Переход к хаосу в системах «реакция–диффузия». Простейшие модели
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 3-12Просмотров за год: 6. Цитирований: 1 (РИНЦ).В работе рассматривается появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории систем «реакция–диффузия». Исследуются динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который ранее был изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа были исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.
- Просмотров за год: 36.
-
Компьютерное исследование голоморфной динамики экспоненциального и линейно-экспоненциального отображений
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 383-405Просмотров за год: 51. Цитирований: 1 (РИНЦ).Работа принадлежит направлению экспериментальной математики, исследующей свойства математических объектов вычислительными средствами компьютера. Базовым отображением служит экспоненциальное, топологические свойства (букеты Кантора) которого отличаются от свойств полиномиальных и рациональных функций на комплексной плоскости. Предметом исследования являются характер и особенности множеств Фату и Жюлиа, а также точек равновесия и орбит нуля трех итерированных комплекснозначных отображений: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, где $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. Для квазилинейного отображения g, не обладающего свойством аналитичности, было обнаружено два бифуркационных перехода: рождение новой точки равновесия (для него было найдено критическое значение параметра, а сама бифуркация представляет собой смешанный случай «вилки» и седлоузельного перехода) и переход к радикальной трансформации множества Фату. Выявлен нетривиальный характер сходимости к фиксированной точке, связанный с появлением «долин» на графике скоростей сходимости. Для двух других отображений существенна монопериодичность режимов, отмечен феномен «удвоения периода» (в одном случае по пути $39\to 3$, в другом — по пути $17\to 2$), причем обнаружено совпадение кратности периода и числа рукавов спирали множества Жюлиа в окрестности фиксированной точки. Приведен богатый иллюстративный материал, численные результаты экспериментов и сводные таблицы, отражающие параметрическую зависимость отображений. Сформулированы вопросы для дальнейшего исследования средствами традиционной математики.
-
Экспериментальное исследование динамики одиночных и связанных в решетке комплекснозначных отображений: архитектура и интерфейс авторской программы для моделирования
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1101-1124В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.
Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.
В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:
1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;
2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.
-
Свойства алгоритмов поиска оптимальных порогов для задач многозначной классификации
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1221-1238Модели многозначной классификации возникают в различных сферах современной жизни, что объясняется всё большим количеством информации, требующей оперативного анализа. Одним из математических методов решения этой задачи является модульный метод, на первом этапе которого для каждого класса строится некоторая ранжирующая функция, упорядочивающая некоторым образом все объекты, а на втором этапе для каждого класса выбирается оптимальное значение порога, объекты с одной стороны которого относят к текущему классу, а с другой — нет. Пороги подбираются так, чтобы максимизировать целевую метрику качества. Алгоритмы, свойства которых изучаются в настоящей статье, посвящены второму этапу модульного подхода — выбору оптимального вектора порогов. Этот этап становится нетривиальным в случае использования в качестве целевой метрики качества $F$-меры от средней точности и полноты, так как она не допускает независимую оптимизацию порога в каждом классе. В задачах экстремальной многозначной классификации число классов может достигать сотен тысяч, поэтому исходная оптимизационная задача сводится к задаче поиска неподвижной точки специальным образом введенного отображения $\boldsymbol V$, определенного на единичном квадрате на плоскости средней точности $P$ и полноты $R$. Используя это отображение, для оптимизации предлагаются два алгоритма: метод линеаризации $F$-меры и метод анализа области определения отображения $\boldsymbol V$. На наборах данных многозначной классификации разного размера и природы исследуются свойства алгоритмов, в частности зависимость погрешности от числа классов, от параметра $F$-меры и от внутренних параметров методов. Обнаружена особенность работы обоих алгоритмов для задач с областью определения отображения $\boldsymbol V$, содержащей протяженные линейные участки границ. В случае когда оптимальная точка расположена в окрестности этих участков, погрешности обоих методов не уменьшаются с увеличением количества классов. При этом метод линеаризации достаточно точно определяет аргумент оптимальной точки, а метод анализа области определения отображения $\boldsymbol V$ — полярный радиус.
-
Квантильные меры формы для распределений с тяжелыми хвостами
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1041-1077Современная литература содержит многочисленные примеры применения распределений с тяжелыми хвостами для прикладных исследований сложных систем. Моделирование экстремальных данных обычно ограничено небольшим набором форм распределений, которые исторически применяются в данной области прикладных исследований. Расширение набора форм возможно посредством сопоставления мер форм распределений. В работе на примере бета-распределения второго рода показано, что неопределенность моментов тяжелохвостых бета-распределений ограничивает применимость классических методов моментов для исследования их форм. На данном этапе сохраняется актуальность построения методов сопоставления распределений с помощью квантильных мер формы, которые освобождены от ограничений на параметры формы. Цель работы состоит в компьютерном исследовании возможности построения пространства квантильных мер форм для проведения сравнения распределений с тяжелыми хвостами. На основе компьютерного моделирования проводится картирование реализаций распределений в пространстве параметрических, квантильных и информационных мер формы. Картирование распределений в пространстве только параметрических мер формы показало, что наложение множества распределений с тяжелыми хвостами в пространстве квантильных мер асимметрии и эксцесса не позволяет сопоставить формы распределений, принадлежащие разным типам распределений. Хорошо известно, что информационные меры содержат дополнительную информацию о мере формы распределений. В работе предложен квантильный коэффициент энтропии в качестве дополнительной независимой меры формы, построенной на отношении интервалов энтропийной и квантильной неопределенностей. На примере логнормального распределения и распределения Парето иллюстрируются возможности сравнения форм распределений с реализациями бета-распределения второго рода. В частности показано, что, несмотря на близость положений форм в трехмерном пространстве, формы реализаций логнормального распределения отсутствуют среди реализаций бета-распределения второго рода. Картирование положения устойчивых распределений в трехмерном пространстве квантильных мер форм позволило оценить параметры формы бета-распределения второго рода, для которого форма наиболее близка к форме распределения Леви. Из материала статьи следует, что отображение распределений в трехмерном пространстве квантильных мер форм значительно расширяет возможность сравнения форм для распределений с тяжелыми хвостами.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"