Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'пространственная структура':
Найдено статей: 73
  1. Кузнецов М.Б.
    Исследование формирования структур Тьюринга под влиянием волновой неустойчивости
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 397-412

    Рассматривается классическая для нелинейной динамики модель «брюсселятор», дополненная третьей переменной, играющей роль быстро диффундирующего ингибитора. Модель исследуется в одномерном случае в области параметров, где проявляются два типа диффузионной неустойчивости однородного стационарного состояния системы: волновая неустойчивость, приводящая к самопроизвольному формированию автоволн, и неустойчивость Тьюринга, приводящая к самопроизвольному формированию стационарных диссипативных структур, или структур Тьюринга. Показано, что благодаря субкритическому характеру бифуркации Тьюринга взаимодействие двух неустойчивостей в данной системе приводит к самопроизвольному формированию стационарных диссипативных структур еще до прохождения бифуркации Тьюринга. В ответ на различные случайные шумовые возмущения пространственно-однородного стационарного состояния в исследуемой параметрической области в окрестности точки двойной бифуркации в системе могут устанавливаться различные режимы: как чистые, состоящие только из стационарных или только автоволновых диссипативных структур, так и смешанные, при которых разные режимы проявляются в разных участках расчетного пространства. В рассматриваемой параметрической области система является мультистабильной и проявляет высокую чувствительность к начальным шумовым условиям, что приводит к размытию границ между качественно разными режимами. При этом даже в зоне доминирования смешанных режимов с преобладанием структур Тьюринга значительную вероятность имеет установление чистого автоволнового режима. В случае установившихся смешанных режимов достаточно сильное локальное возмущение в участке расчетного пространства, где проявляется автоволновой режим, может инициировать локальное формирование новых стационарных диссипативных структур. Локальное возмущение стационарного однородного состояния в исследуемой области параметрического пространства приводит к качественно схожей карте устоявшихся режимов, при этом зона доминирования чистых автоволновых режимов расширяется с увеличением амплитуды локального возмущения. В двумерном случае в системе не устанавливаются смешанные режимы. При эволюции системы в случае появления локальных структур Тьюринга под воздействием автоволнового режима со временем они заполняют все расчетное пространство.

    Просмотров за год: 21.
  2. Самсонов К.Ю., Кабанов Д.К., Назаров В.Н., Екомасов Е.Г.
    Локализованные нелинейные волны уравнения синус-Гордона в модели с тремя протяженными примесями
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 855-868

    В работе с помощью аналитических и численных методов рассматривается задача о структуре и динамике связанных локализованных нелинейных волн в модели синус-Гордона с тремя одинаковыми притягивающими протяженными примесями, которые моделируются пространственной неоднородностью периодического потенциала. Найдены два возможных типа связанных нелинейных локализованных волн — бризерного и солитонного. Проведен анализ влияния параметров системы и начальных условий на структуру локализованных волн, их амплитуду и частоту. Связанные колебания локализованных волн бризерного типа, как и для случая точечных примесей, представляет собой сумму трех гармонических колебаний: синфазного, синфазно-антифазного и антифазного типа. Частотный анализ локализованных на примесях волн, которые были получены в ходе численного эксперимента, выполнялся с помощью дискретного преобразования Фурье. Для анализа локализованных волн бризерного типа применялся численный метод конечных разностей. Для проведения качественно анализа полученных численных результатов задача решалась аналитически для случая малых амплитуд локализованных на примесях колебаний. Показано, что при определенных параметрах примеси (глубина, ширина) можно получить локализованные волны солитонного типа. Найдены области значений параметров системы, в которых существуют локализованные волны определенного типа, а также область перехода от бризерных к солитонным типам колебаний. Были определены значения глубины и ширины примеси, при которых наблюдается переход от бризерного к солитонному типу локализованных колебаний. Были получены и рассмотрены различные сценарии колебаний солитонного типа с отрицательными и положительными значениями амплитуд на всех трех примесях, а также и смешанные случаи. Показано, что в случае расстояния между примесями много меньше единицы отсутствует переходная область, в которой зарождающийся бризер после потери энергии на излучение переходит в солитон. Показано, что рассмотренная модель может быть использована, например, для описания динамики волн намагниченности в мультислойных магнетиках.

  3. Борисов А.В., Трифонов А.Ю., Шаповалов А.В.
    Влияние конвекции на двумерную динамику в нелокальной реакционно-диффузионной модели
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 55-61

    Численными методами исследовано формирование пространственных структур, описываемых скалярным уравнением Фишера–Колмогорова–Петровского–Пискунова с нелокальными конкурентными потерями и конвекцией, линейно зависящей от пространственных переменных. Показано, что при соответствующем выборе значений параметров уравнения, начальная функция, локализованная в окрестности точки, трансформируется в функцию, локализованную в окрестности кольца с симметрично расположенными на нем локальными максимумами. Радиус кольца и число максимумов зависят от конвекции.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  4. Немчинова А.В.
    Признаки стохастической детерминированности автогенной сукцессии лесных экосистем в марковских моделях
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 255-265

    В статье описывается метод моделирования хода сукцессии лесных экосистем до климаксовой стадии с помощью построения марковской цепи. Показаны возможности метода устанавливать закономерности ходов сукцессии в собственных временах формирования лесных экосистем. В отличие от традиционных методов моделирования сукцессии на основе смен типов растительности, за переходные стадии разрабатываемой модели приняты варианты сформированности вертикальной структуры лесных сообществ и их насыщенности позднесукцессионными видами. Длительность сукцессионных ходов из любого состояния устанавливается не в абсолютных временны́х единицах, а рассчитывается по средним числам шагов до попадания в климакс в единой временнóй шкале. Выявлено свойство восстанавливающейся растительности, определенное как признак стохастической детерминированности хода автогенной сукцессии. Приведены свидетельства того, что ход и темп лесной сукцессии стохастически детерминированы внутренними особенностями пространственной и популяционной организации сообществ.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  5. Курушина С.Е., Шаповалова Е.А.
    Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607

    В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.

    Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.

    В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.

    Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.

    Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.

    Просмотров за год: 7.
  6. Говорухин В.Н., Филимонова А.М.
    Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426

    Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.

    В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.

    Просмотров за год: 16.
  7. Андрущенко В.А., Моисеева Д.С., Моторин А.А., Ступицкий Е.Л.
    Моделирование физических процессов воздействия мощного ядерного взрыва на астероид
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 861-877

    В рамках проблемы предотвращения астероидно-кометной угрозы выполнен физический и теоретический анализ процессов воздействия различных факторов надповерхностного ядерного взрыва достаточно высокой энергии на астероид во внеатмосферных условиях космического пространства. Показано, что в соответствии с энергией и проницаемой способностью плазмы продуктов взрыва, рентгеновского и гамма-нейтронного излучения на поверхности астероида, обращенной к взрыву, образуется слоистая структура с разной плотностью энергии, зависящей от угловых координат. Для каждого слоя выяснен временной характер трансформации энергии внутри него и определены роли различных фото- и столкновительных процессов. Воздействие высокоскоростного потока плазмы носит эрозионный характер, при этом импульс плазмы передается астероиду. Показано, что в тонком слое поглощения рентгеновского излучения вещество астероида разогревается до высоких температур, и в результате его расширения формируется импульс отдачи, который не является определяющим из-за малой массы расширяющейся высокотемпературной плазмы. Расчеты показали, что основной импульс, полученный астероидом, связан с уносом разогретого слоя вещества, образованного нейтронным потоком (7.5 · 1014 г · см/с). Показано, что астероид с радиусом ~100 м приобретает при этом скорость ≈ 100 см/с. Расчеты выполнены с учетом затрат энергии взрыва на разрушение аморфной структуры вещества астероида (~1 эВ/атом = 3.8 · 1010 эрг/г) и на ионизацию в области высокотемпературного слоя. На основе аналогичного анализа получено приближенное выражение для оценки среднего размера осколков при возможном разрушении астероида ударными волнами, образующимися внутри него под действием импульсов давления. Выполнен физический эксперимент в лабораторных условиях, имитирующий фрагментацию каменного астероида и подтвердивший справедливость полученной зависимости от выбранных значений определенных параметров. В результате численных исследований воздействия взрыва, произведенных на различном расстоянии от поверхности астероида, показано, что учет реальной геометрии отколочного слоя дает оптимальную высоту для формирования максимального импульса астероида примерно в 1.5 раза большую, чем аналогичные оценки по упрощенной модели. Предложена двухэтапная концепция воздействия ядерных взрывов на астероид с использованием радиолокационных средств наведения. Проанализировано возможное влияние возникающих ионизационных помех на радиолокационное слежение за разлетом крупных осколков астероида в условиях пространственно-временной эволюции всех элементов исследуемой динамической системы.

  8. Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.

  9. Устинин Д.М., Коваленко И.Б., Ризниченко Г.Ю., Рубин А.Б.
    Сопряжение различных методов компьютерного моделирования в комплексной модели фотосинтетической мембраны
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 65-81

    Необходимость корректного учета деталей пространственной и функциональной организации клеточных структур требует поиска новых подходов к моделированию субклеточных процессов, в том числе первичных процессов фотосинтеза в тилакоидной мембране. Эти подходы должны интегрировать физические и биологические представления о конкретных механизмах, которые объединяются в общую картину на уровне компьютерной модели. В работе предлагается новый подход к моделированию, в котором воспроизводится трехмерная пространственная структура фотосинтетической мембраны. Разные стадии переноса зарядов при фотосинтезе моделируются с использованием разного математического аппарата и объединяются в единую компьютерную модель. Разработанные алгоритмы реализованы в виде программного комплекса, использующего параллельные вычисления на высокопроизводительных кластерах и графических процессорах.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  10. Алпеева Л.Е., Цибулин В.Г.
    Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671

    Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.