Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 20.
-
Репрессилятор с запаздывающей экспрессией генов. Часть I. Детерминистское описание
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 241-259Просмотров за год: 30.Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую цепь из трех генетических элементов — $lacI$, $\lambda cI$ и $tetR$, — которые имеют естественное происхождение, но в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. В данной работе впервые рассматривается нелинейная динамика модифицированного репрессилятора, у которого имеются запаздывания по времени во всех звеньях регуляторной цепи. Запаздывание может быть как естественным, т. е. возникать во время транскрипции/трансляции генов в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов синтетической биологии. Предполагается, что регуляция осуществляется протеинами в димерной форме. Рассмотренный репрессилятор имеет еще две важные модификации: расположение на той же плазмиде гена $gfp$, кодирующего флуоресцентный белок, а также наличие в системе накопителя для белка, кодируемого геном $tetR$. В рамках детерминистского описания методом разложения на быстрые и медленные движения получена система нелинейных дифференциальных уравнений с запаздыванием на медленном многообразии. Показано, что при определенных значениях управляющих параметров единственное состояние равновесия теряет устойчивость колебательным образом. Для симметричного репрессилятора, у которого все три гена идентичны, получено аналитическое решение для нейтральной кривой бифуркации Андронова–Хопфа. Для общего случая асимметричного репрессилятора нейтральные кривые построены численно. Показано, что асимметричный репрессилятор является более устойчивым, так как система ориентируется на поведение наиболее стабильного элемента в цепи. Изучены нелинейные динамические режимы, возникающие в репрессиляторе при увеличении надкритических значений управляющих параметров. Кроме предельного цикла, отвечающего поочередным релаксационным пульсациям белковых концентраций элементов, в системе обнаружено существование медленного многообразия, не связанного с этим циклом. Долгоживущий переходный режим, который отвечает многообразию, отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Производится сравнение полученных результатов с известными из литературы экспериментальными данными. Обсуждается место предложенной в работе модели среди других теоретических моделей репрессилятора.
-
Система хранения профилей физических свойств ДНК на примере промоторов Escherichia coli
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 443-450Просмотров за год: 3.В данной работе нами представлена база данных, спроектированная для хранения профилей физических свойств вдоль двойной спирали ДНК, и продемонстрировано ее использование для хранения, поиска и анализа промоторных последовательностей E. coli. Отличительным свойством предложенной базы данных является то, что весь профиль хранится как единый объект, который с точки зрения СУБД полностью подобен строке или числу. Такие объекты СУБД может сравнивать друг с другом и осуществлять быструю выборку на основании индексов. В базу данных загружена информация о 1227 известных промоторах. Для каждого промотора сохранена нуклеотидная последовательность, а также вычислен и загружен в базу профиль электростатического потенциала промоторной ДНК. Кроме того, каждый промотор связан с генами, транскипцию которых он регулирует, а также с записями о сайтах посадки транскрипционных факторов, влияющих на функционирование промотора. Организован доступ к базе данных через интернет; исходные коды доступны для скачивания, а содержимое базы данных может быть выслано авторами по запросу.
-
Репрессилятор с запаздывающей экспрессией генов. Часть II. Стохастическое описание
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 587-609Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую малоразмерную цепь из трех генов: $lacI$, $\lambda cI$ и $tetR$, которые в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. Ранее в работе [Брацун и др., 2018] была предложена математическая модель запаздывающего репрессилятора и изучены ее свойства в рамках детерминистского описания. Предполагается, что запаздывание может быть как естественным, т. е. возникать во время процессов транскрипции/трансляции в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов генной инженерии. Данная работа посвящена стохастическому описанию динамических процессов в запаздывающем репрессиляторе, которое является важным дополнением детерминистского анализа из-за сильных флуктуаций и небольшого числа молекул, принимающих обычно участие в генной регуляции. Стохастическое исследование было проведено численно с помощью алгоритма Гиллеспи, модифицированного для систем с запаздыванием. Приводятся описание алгоритма, его программная реализация и результаты тестовых расчетов для одногенного авторепрессора с запаздыванием. При исследовании репрессилятора обнаружено, что стохастическое описание в ряде случаев дает новую информацию о поведении системы, которая не сводится к детерминистской динамике даже при усреднении по большому числу реализаций. В подкритической области, где детерминистский анализ предсказывает абсолютную устойчивость системы, было обнаружено возбуждение квазирегулярных колебаний, вызываемых нелинейным взаимодействием шума и запаздывания. Выше порога возникновения неустойчивости обнаружено спонтанное изменение фазы колебаний из-за внезапной временной деградации этих колебаний. Ранее в детерминистском анализе был обнаружен долгоживущий переходный режим, который отвечает движению фазовой траектории по медленному многообразию и отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Показано, что в стохастическом случае переход к кооперативному режиму работы генов репрессилятора происходит в среднем на два порядка быстрее. Построено распределение вероятности соскока фазовой траектории с медленного многообразия и определено наиболее вероятное время такого перехода. Обсуждается влияние внутреннего шума химических реакций на динамические свойства репрессилятора.
-
Профили вызванной суперспирализацией дестабилизации дуплекса ДНК (SIDD) для промоторов бактериофага T7
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 867-878Просмотров за год: 18.Для функционирования регуляторных областей ДНК решающее значение имеет не нуклеотидная последовательность (генетический текст), а их физико-химические и структурные свойства. Именно они обеспечивают кодирование ДНК-белковых взаимодействий, лежащих в основе различных процессов регуляции. Среди таких свойств SIDD (Stress-Induced Duplex Destabilization) — характеристика, описывающая склонность участка дуплекса ДНК к плавлению при заданном уровне суперспирализации. Ранее для данного параметра дуплекса показана роль в функционировании областей регуляции различного типа. В данной работе модель SIDD использована для получения профилей вероятности плавления последовательностей промоторов бактериофага T7. Данный геном характеризуется малым размером (примерно 40 тыс. пар нуклеотидов) и временной организацией экспрессии генов: на первом этапе инфекции ранняя область Т7-ДНК транскрибируется РНК-полимеразой бактерии-хозяина, на более поздних этапах жизненного цикла фагоспецифичная РНК-полимераза последовательно производит транскрипцию областей генов II класса и III класса. При этом механизмы дифференциального узнавания промоторов разных групп ферментом-полимеразой не могут быть основаны исключительно на их нуклеотидной последовательности, в частности в связи с тем, что она очень близка для большинства таких промоторов. В то же время полученные профили SIDD данных промоторов сильно различаются и могут быть разделены на характерные группы, соответствующие функциональным классам промоторов Т7-ДНК. Так, все промоторы ранней области находятся в области влияния одного максимально дестабилизированного участка дуплекса ДНК, соответствующего различным областям конкретных промоторов. Промоторы класса II лишены значительно дестабилизированных областей вблизи точки старта транскрипции. Напротив, промоторы III класса имеют характерные пики профилей вероятности плавления, в каждом случае локализованные в ближней downstream-области. Таким образом, установлены значительные различия профилей для промоторных областей при очень близкой нуклеотидной последовательности (промоторы II и III классов отличаются единичными заменами нуклеотидов), что подтверждает высокую чувствительность рассматриваемого свойства дуплекса к первичной структуре, а также необходимость рассмотрения широкого генетического контекста. Описанные различия профилей вероятности плавления на основе модели SIDD наряду с другими физическими свойствами могут определять дифференциальное узнавание промоторов разных классов РНК-полимеразами.
-
Определение промоторных и непромоторных последовательностей E.coli по профилям их электростатического потенциала
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 347-359Просмотров за год: 3.В рамках данной работыбы ла продемонстрирована возможность использования характеристик профилей электростатического потенциала вдоль последовательностей ДНК для определения их функционального класса. Построенымо дели, позволяющие разделять промоторные и непромоторные последовательности (случайные бернуллиевские, кодирующие и псевдопромоторы) с точностью порядка 83–85%. Определены наиболее значимые участки для такого разделения, по-видимому играющие важную роль при ДНК-полимеразном узнавании.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"