Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'модель':
Найдено статей: 699
  1. Куракин П.В.
    Technoscape: мультиагентная модель эволюции сети городов, объединенных торгово-производственными связями
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 163-178

    В работе предлагается многоагентная локально-нелокальная модель образования глобальной структуры городов с условным названием Technoscape. Technoscape можно в определенной степени считать также моделью возникновения глобальной экономики. Текущий вариант модели рассматривает очень простые способы поведения и взаимодействия агентов, при этом модель демонстрирует весьма интересные пространственно-временные паттерны.

    Под локальностью и нелокальностью понимаются пространственные характеристики способа взаимодействия агентов друг с другом и с географическим пространством, на котором разворачивается эволюция системы. Под агентом понимается условный ремесленник, семья или промышленно-торговая фирма, причем не делается разницы между производством и торговлей. Агенты размещены на ограниченном двумерном пространстве, разбитом на квадратные ячейки, и перемещаются по нему. Модель демонстрирует процессы высокой концентрации агентов в выделенных ячейках, что трактуется как образование Technoscape: мультиагентная модель эволюции «сетигородов». Происходит постоянный процесс как возникновения, так и исчезновения городов. Агенты живут Technoscape: мультиагентная модель эволюции «сетивечно», не мутируют и не эволюционируют, хотя это перспективное направление развития модели.

    Система Technoscape демонстрирует качественно новый вид самоорганизации. Частично эта самоорганизация напоминает поведение модели сегрегации по Томасу Шеллингу, однако эволюционные правила Technoscape существенно иные. В модели Шеллинга существуют лавины, но без добавления новых агентов в системе существуют простые равновесия, в то время как в Technoscape не существует даже строгих равновесий, в лучшем случае квазиравновесные, медленно изменяющиеся состояния.

    Нетривиальный результат в модели Technoscape, также контрастирующий с моделью сегрегации Шеллинга, состоит в том, что агенты проявляют склонность к концентрации в больших городах даже при полном игнорировании локальных связей.

    При этом, хотя агенты и стремятся в большие города, размер города не является гарантией стабильности. По ходу эволюции системы происходит постоянное Technoscape: мультиагентная модель эволюции «сетипереманивание» жителей в другие города такого же класса.

  2. Рассмотрены вопросы адекватности разработанной ранее автором модели для анализа неравенства доходов, основанной на эмпирически подтвержденной гипотезе о том, что относительные (по отношению к доходу наиболее богатой группы) величины дохода 20% групп населения в совокупном доходе могут быть приближенно представлены в виде конечной функциональной последовательности, каждый член которой зависит от одного параметра — специально определенного показателя неравенства. Показано, что в дополнение к существующим методам анализа неравенства с помощью этой модели можно определить зависимость доли дохода 20%, 10% и более мелких групп населения от уровня неравенства, выявить особенности их изменения при росте неравенства, рассчитать уровень неравенства при известных соотношениях между доходами различных групп населения и др.

    В работе приводится более подробное подтверждение адекватности предложенной модели по сравнению с полученными ранее результатами статистического анализа эмпирических данных о распределении доходов между 20%- и 10%-ми группами населения. Оно основано на анализе определенных соотношений между величинами квинтилей и децилей согласно предлагаемой модели. Проверка этих соотношений проведена по совокупности данных для большого числа стран. Полученные оценки подтверждают достаточно высокую точность модели.

    Приведены данные, которые подтверждают возможность применения модели для анализа зависимости распределения доходов по группам населения от уровня неравенства, а также для оценки показателя неравенства для вариантов соотношений доходов между различными группами, в том числе когда доход 20% наиболее богатых равен доходу 60% бедных, доходу 40% среднего класса или доходу 80% остального населения, а также когда доход 10% самых богатых равен доходу 40%, 50% или 60% бедных, доходу различных групп среднего класса и др., а также для случаев, когда распределение доходов подчиняется гармоническим пропорциям и когда квинтили и децили, соответствующие среднему классу, достигают максимума. Показано, что доли дохода наиболее богатых групп среднего класса относительно стабильны и имеют максимум при определенных уровнях неравенства.

    Полученные с помощью модели результаты могут быть использованы для определения нормативов при разработке политики поэтапного повышении уровня прогрессивного налогообложения с целью перехода к уровню неравенства, характерному для стран с социально ориентированной экономикой.

  3. Моторин А.А., Ступицкий Е.Л.
    Физический анализ и математическое моделирование параметров области взрыва, произведенного в разреженной ионосфере
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 817-833

    В работе выполнен физический и численный анализ динамики и излучения продуктов взрыва, образующихся при проведении российско-американского эксперимента в ионосфере с использованием взрывного генератора на основе гексогена и тротила. Основное внимание уделяется анализу взаимосвязи излучения возмущенной области с динамикой процессов взрывчатого вещества и плазменной струи на поздней стадии. Проанализирован подробный химический состав продуктов взрыва и определены начальные концентрации наиболее важных молекул, способных излучать в инфракрасном диапазоне спектра, и приведены их излучательные константы. Определены начальная температура продуктов взрыва и показатель адиабаты. Проанализирован характер взаимопроникновения атомов и молекул сильно разреженной ионосферы в сферически расширяющееся облако продуктов. Разработана приближенная математическая модель динамики продуктов взрыва в условиях подмешивания к ним разреженного воздуха ионосферы и рассчитаны основные термодинамические характеристики системы. Показано, что на время 0,3–3 с происходит существенное повышение температуры разлетающейся смеси в результате ее торможения. Для анализа и сравнения на основе лагранжевого подхода разработан численный алгоритм решения двухобластной газодинамической задачи, в которой продукты взрыва и фоновый газ разделены контактной границей. Требовалось выполнение специальных условий на контактной границе при ее движении в покоящемся газе. В данном случае существуют определенные трудности в описании параметров продуктов взрыва вблизи контактной границы, что связано с большим различием в размерах массовых ячеек продуктов взрыва и фона из-за перепада плотности на 13 порядков. Для сокращения времени расчета данной задачи в области продуктов взрыва применялась неравномерная расчетная сетка. Расчеты выполнялись с различными показателями адиабаты. Получены результаты, наиболее важным из которых является температура, хорошо согласуется с результатами, полученными по методике, приближенно учитывающей взаимопроникновение. Получено поведение во времени коэффициентов излучения ИК-активных молекул в широком диапазоне спектра. Данное поведение качественно согласуется с экспериментами по ИК-свечению разлетающихся продуктов взрыва.

  4. Петров А.П., Подлипская О.Г., Прончев Г.Б.
    Моделирование динамики общественного внимания к протяженным процессам на примере пандемии COVID-19
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1131-1141

    Изучается динамика общественного внимания к эпидемии COVID-19 в ряде стран. При этом в качестве индикатора общественного внимания взято количество поисковых запросов в Google, сделанных в течение суток пользователями изданной страны. В эмпирической части работы рассмотрены данные относительно количества запросов и количества новых заболевших для ряда стран. Показано, что во всех рассмотренных странах максимум общественного внимания наступил ранее максимума количества новых зараженных за день. Тем самым обнаружено, что в течение некоторого периода времени рост эпидемии происходит параллельно со спадом общественного внимания к ней. Также показано, что спад количества запросов описывается экспоненциальной функцией времени. Для того чтобы описать выявленную эмпирическую зависимость, предложена математическая модель, представляющая собой модификацию модели спада внимания после одноразового политического события. Модель развивает подход, рассматривающий принятие решения индивидом как членом социума, в котором происходит информационный процесс. В рамках этого подхода предполагается, что решение индивида о том, делать ли в данный день поисковый запрос на тему COVID, формируется на основании двух факторов. Один изн их — это установка, отражающая долгосрочную заинтересованность индивида в данной теме и аккумулирующая предыдущий опыт индивида, его культурные предпочтения, социальное и экономическое положение. Второй — динамический фактор общественного внимания к данному процессу — изменяется в течение рассматриваемого процесса под влиянием информационных стимулов. Применительно к рассматриваемой тематике информационные стимулы связны с эпидемической динамикой. Пове- денческая гипотеза состоит в том, что если в некоторый день сумма установки и динамического фактора превышает некоторую пороговую величину, то в этот день индивид делает поисковый запрос на тему COVID. Общая логика состоит в том, что чем выше скорость роста числа заболевших, тем выше информационный стимул, тем медленнее убывает общественное внимание к пандемии. Таким образом, построенная модель позволила соотнести скорость экспоненциального убывания количества запросов со скоростью роста количества заболевших. Обнаруженная с помощью модели закономерность проверена на эмпирических данных. Получено, что статистика Стьюдента равна 4,56, что позволяет отклонить гипотезу об отсутствии корреляционной связи с уровнем значимости 0,01.

  5. Малков С.Ю., Коротаев А.В., Давыдова О.И.
    Мировая динамика как объект моделирования (к пятидесятилетию первого доклада Римскому клубу)
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1371-1394

    В последней четверти ХХ века характер глобального демографического и экономического развития стал быстро изменяться: непрерывно ускорявшийся рост основных характеристик, имевший место на протяжении предыдущих двухсот лет, сменился на резкое их торможение. В условиях этих изменений возрастает роль долгосрочного прогноза мировой динамики. При этом прогноз должен основываться не на инерционном проецировании прошлых тенденций в будущие периоды, а на математическом моделировании фундаментальных закономерностей исторического развития. В статье изложены предварительные результаты исследований по математическому моделированию и прогнозированию мировой демографо-экономической динамики, основанные на таком подходе. Предложены базовые динамические уравнения, отражающие эту динамику, обоснована модификация этих уравнений применительно к разным историческим эпохам. Для каждой исторической эпохи на основе анализа соответствующей ей системы уравнений определялся фазовый портрет и проводился анализ его особенностей. На основе этого анализа делались выводы о закономерностях мирового развития в рассматриваемый период.

    Показано, что для моделирования исторической динамики важным является математическое описание развития технологий. Предложен способ описания технологической динамики, на основе которого предложены соответствующие математические уравнения.

    Рассмотрены три стадии исторического развития: стадия аграрного общества (до начала XIX века), стадия индустриального общества (XIX–ХХ века) и современная эпоха. Предложенная математическая модель показывает, что для аграрного общества характерна циклическая демографо-экономическая динамика, в то время как для индустриального общества характерен рост демографических и экономических характеристик, близкий к гиперболическому.

    Результаты математического моделирования показали, что человечество в настоящее время переходит на принципиально новую фазу исторического развития. Происходит торможение роста и переход человеческого общества в новое фазовое состояние, облик которого еще не определен. Рассмотрены различные варианты дальнейшего развития.

  6. Создание компьютерного лабораторного стенда, позволяющего получать достоверные характеристики, которые могут быть приняты за действительные, с учетом погрешностей и шумов (в чем заключается главная отличительная черта вычислительного эксперимента от модельных исследований), является одной из основных проблем настоящей работы. В ней рассматривается следующая задача: имеется прямоугольный волновод в одномодовом режиме, на широкой стенке которого прорезано сквозное технологическое отверстие, через которое в полость линии передачи помещается образец для исследования. Алгоритм восстановления следующий: в лаборатории производится измерение параметров цепи (S11 и/или S21) в линии передачи с образцом. В компьютерной модели лабораторного стенда воссоздается геометрия образца и запускается итерационный процесс оптимизации (или свипирования) электрофи- зических параметров образца, маской которого являются экспериментальные данные, а критерием остановки — интерпретационная оценка близости к ним. Важно отметить, что разрабатываемая компьютерная модель, одновременно с кажущейся простотой, изначально является плохо обусловленной. Для постановки вычислительного эксперимента используется среда моделирования Comsol. Результаты проведенного вычислительного эксперимента с хорошей степенью точности совпали с результатами лабораторных исследований. Таким образом, экспериментальная верификация проведена для целого ряда значимых компонент, как компьютерной модели в частности, так и алгоритма восстановления параметров объекта в общем. Важно отметить, что разработанная и описанная в настоящей работе компьютерная модель может быть эффективно использована для вычислительного эксперимента по восстановлению полных диэлектрических параметров образца сложной геометрии. Обнаруженными могут также являться эффекты слабой бианизотропии, включая киральность, гиротропность и невзаимность материала. Полученная модель по определению является неполной, однако ее полнота является наивысшей из рассматриваемых вариантов, одновременно с этим результирующая модель оказывается хорошо обусловлена. Особое внимание в данной работе уделено моделированию коаксиально-волноводного перехода, показано, что применение дискретно-элементного подхода предпочтительнее, чем непосредственное моделирование геометрии СВЧ-узла.

  7. Лукьянцев Д.С., Афанасьев Н.Т., Танаев А.Б., Чудаев С.О.
    Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443

    Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.

  8. Калитин К.Ю., Невзоров А.А., Спасов А.А., Муха О.Ю.
    Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772

    Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.

    Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.

    Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.

    Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.

    В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.

  9. Пантелеев М.А., Бершадский Е.С., Шибеко А.М., Нечипуренко Д.Ю.
    Актуальные проблемы компьютерного моделирования тромбоза, фибринолиза и тромболизиса
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 975-995

    Система гемостаза представляет собой одну из ключевых защитных систем организма, которая присутствует практически во всех его жидких тканях, но наиболее важна в крови. Она активируется при различных повреждениях стенки сосуда, и взаимодействие ее специализированных клеток и гуморальных систем приводит сначала к формированию гемостатического сгустка, останавливающего потерю крови, а затем к постепенному растворению этого сгустка. Образование гемостатического тромба — уникальный с точки зрения физиологии процесс, так как за время порядка минуты система гемостаза образует сложные структуры, имеющие пространственный масштаб от микрометров (в случае повреждения микрососудов или стыков между отдельными эндотелиальными клетками) до сантиметра (в случае повреждения крупных магистральных артерий). Гемостатический ответ зависит от множества скоординированных и параллельно идущих процессов, включающих адгезию тромбоцитов, их активацию, агрегацию, секрецию различных гранул, изменение формы, состава внешней части липидного бислоя, контракцию тромба и образование фибриновой сети в результате работы каскада свертывания крови. Компьютерное моделирование представляет собой мощный инструмент для исследования этой сложной системы и решения практических задач в этой области на разных уровнях организации: от внутриклеточной сигнализации в тромбоцитах, моделирования гуморальных систем свертывания крови и фибринолиза и до разработки многомасштабных моделей тромбообразования. Проблемы, связанные с компьютерным моделированием биологических процессов, можно разделить на две основные категории: отсутствие адекватного физико-математического описания имеющихся в литературе экспериментальных данных из-за сложности биологических систем (проблема отсутствия адекватной теоретической модели биологических процессов) и проблема высокой вычислительной сложности некоторых моделей, которая не позволяет применять их для исследования физиологически интересных сценариев. Здесь мы рассмотрим как некоторые принципиальные проблемы в области моделирования свертывания крови, которые до сих пор остаются нерешенными, так и прогресс в экспериментальных исследованиях гемостаза и тромбоза, ведущий к пересмотру многих ранее принятых представлений, что необходимо отразить в новых компьютерных моделях этих процессов. Особое внимание будет уделено нюансам артериального, венозного и микрососудистого тромбоза, а также проблемам фибринолиза и тромболизиса. В обзоре также кратко обсуждаются основные типы используемых математических моделей, их сложность с точки зрения вычислений, а также принципиальные вопросы, связанные с возможностью описания процессов тромбообразования в артериях.

  10. Марченко Л.Н., Косенок Я.А., Гайшун В.Е., Бруттан Ю.В.
    Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252

    Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.