Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'модель':
Найдено статей: 699
  1. Макарова И.В., Шубенкова К.А., Маврин В.Г., Бойко А.Д.
    Особенности маршрутизации общественного транспорта в городах разных видов
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 381-394

    В статье представлена классификация городов с учетом планировочных особенностей и возможных транспортных решений для городов различных типов. Также обсуждаются примеры различных стратегий развития городского общественного транспорта в России и странах Европейского союза с сопоставлением их эффективности. В статье приводятся примеры влияния городского планирования на мобильность граждан. Для реализации сложных стратегических решений необходимо использовать микро- и макромодели, которые позволяют сравнивать ситуации «как есть» и «как будет» для прогнозирования последствий. Кроме того, авторы предлагают методику совершенствования маршрутной сети общественного транспорта и улично-дорожной сети, которая включает определение потребностей населения в трудовых и учебных корреспонденциях, идентификацию узких мест улично-дорожной сети, разработку имитационных моделей и выработку рекомендаций по результатам эксперимента на моделях, а также расчет эффективности, включающий расчет положительного социального эффекта, экономическую эффективность, повышение экологичности и устойчивости городской транспортной системы. Для обоснования предложенной методологии были построены макро- и микромодели исследуемого города с учетом пространственной планировки и других особенностей города. Таким образом, на примере города Набережные Челны показано, что использование нашей методологии может помочь улучшить ситуацию на дорогах за счет оптимизации сети автобусных маршрутов и дорожной инфраструктуры. Результаты показали, что при реализации предложенных решений можно уменьшить транспортную нагрузку на узкие места, количество перекрывающихся автобусных маршрутов, а также плотность движения.

  2. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

  3. Янбарисов Р.М.
    Параллельный метод вложенных дискретных трещин для моделирования течений в трещиноватых пористых средах
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 735-745

    В данной работе рассматривается параллельный метод решения задач однофазной фильтрации в трещиноватой пористой среде, основанный на представлении трещин вложенными в расчетную сетку поверхностями и называемый в литературе моделью (или методом) вложенных дискретных трещин. В рамках модели пористая среда и крупные трещины представляются в виде двух независимых континуумов. Отличительной особенностью рассматриваемого подхода является то, что расчетная сетка не перестраивается под положение трещин, при этом для каждой ячейки, пересекаемой трещиной, вводится дополнительная степень свободы. Дискретизация потоков между введенными континуумами трещин и пористой среды использует преднасчитанные характеристики пересечения поверхностей трещин с трехмерной расчетной сеткой. При этом дискретизация потоков внутри пористой среды не зависит от потоков между континуумами. Это позволяет интегрировать модель в уже существующие симуляторы многофазных течений в пористых коллекторах и при этом точно описывать поведение течений вблизи трещин.

    Ранее автором был предложен монотонный метод вложенных дискретных трещин, основанный на применении метода конечных объемов с нелинейными схемами дискретизации потоков внутри пористой среды: монотонной двухточечной схемы или компактной многоточечной схемы с дискретным принципом максимума. Было доказано, что дискретное решение полученной нелинейной задачи для системы «пористая среда + трещины» сохраняет неотрицательность или удовлетворяет дискретному принципу максимума в зависимости от выбора схемы дискретизации.

    Данная работа является продолжением предыдущих исследований. Предложенный метод был параллелизован с помощью программной платформы INMOST и протестирован. Были использованы такие возможности INMOST, как сбалансированное распределение сетки по процессорам, масштабируемые методы решения разреженных распределенных систем линейных уравнений и другие. Были проведены параллельные расчеты, демонстрирующие хорошую масштабируемость при увеличении числа процессоров.

  4. Абакумов А.И., Израильский Ю.Г.
    Модели распределения фитопланктона по хлорофиллу в разных условиях среды обитания. Оценка биопродуктивности водной экосистемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1177-1190

    Предложена модель динамики обилия фитопланктона в зависимости от изменения содержания хлорофилла в фитопланктоне под воздействием меняющихся условий среды обитания. Модель учитывает зависимость роста биомассы от условий среды, а также от фотосинтетической активности хлорофилла. Выделены световая и темновая стадии фотосинтеза. Описываются процессы расходования хлорофилла при фотосинтезе на свету и нарастания массы хлорофилла вместе с биомассой фитопланктона. Учитываются условия среды в виде минеральных питательных веществ, освещенности и температуры воды. Модель является распределенной, пространственная переменная соответствует массовой доле хлорофилла в фитопланктоне. Тем самым учтены возможные разбросы доли хлорофилла в фитопланктоне. В модели рассчитывается плотность распределения фитопланктона по доле хлорофилла в нем. Кроме того, вычисляется скорость продуцирования новой биомассы фитопланктона. Параллельно рассмотрены точечные аналоги распределенной модели. В моделях исследованы свойства решений. Продемонстрирована суточная и сезонная, в течение года, динамика распределения фитопланктона по доле хлорофилла. Указаны характеристики скорости первичного продуцирования в суточно или сезонно меняющихся условиях среды. Модельные характеристики динамики роста биомассы фитопланктона показывают, что на свету этот рост примерно в два раза больше, чем в темноте. Это показывает, что освещенность существенно влияет на скорость продуцирования. Сезонная динамика демонстрирует ускоренный рост биомассы весной и осенью. Весенний максимум связан с потеплением в условиях накопленных зимой биогенных веществ, а осенний (несколько меньший) максимум — с накоплением биогенов при летнем спаде биомассы фитопланктона. А биомасса летом уменьшается опять-таки из-за дефицита биогенов. Таким образом, в присутствии света основную роль в динамике фитопланктона играет минеральное питание.

    В целом модель демонстрирует качественно похожую на классические представления динамику биомассы фитопланктона при суточных и сезонных изменениях окружающей среды. Модель представляется пригодной для оценок биопродуктивности водных экосистем. Она может быть дополнена уравнениями и членами уравнений для более подробного описания сложных процессов фотосинтеза. Введение переменных физического пространства обитания и сопряжение модели со спутниковой информацией о поверхности водоема ведут к модельным оценкам биопродуктивности обширных морских районов.

  5. Представлена математическая модель, описывающая необратимые процессы поляризации и деформирования поликристаллических сегнетоэлектриков во внешних электрических и механических полях большой интенсивности, вследствие чего изменяется внутренняя структура и меняются свойства материала. Необратимые явления моделируются в трехмерной постановке для случая одновременного воздействия электрического поля и механических напряжений. Объектом исследования является представительный объем, в котором исследуются остаточные явления в виде возникающих индуцированных и необратимых частей вектора поляризации и тензора деформации. Основной задачей моделирования является построение определяющих соотношений, связывающих между собой вектор поляризации и тензор деформации, с одной стороны, и вектор электрического поля и тензор механических напряжений, с другой стороны. Рассмотрен общий случай, когда направление электрического поля может не совпадать ни с одним из главных направлений тензора механических напряжений. Для обратимых составляющих определяющие соотношения построены в виде линейных тензорных уравнений, в которых упругие и диэлектрические модули зависят от остаточной деформации, а пьезоэлектрические модули - от остаточной поляризации. Определяющие соотношения для необратимых частей строятся в несколько этапов. Вначале построена вспомогательная модель идеального или безгистерезисного случая, когда все векторы спонтанной поляризации могут поворачиваться в поле внешних сил без взаимного влияния друг на друга. Предложен способ подсчета результирующих значений предельно возможных значений поляризации и деформации идеального случая в виде поверхностных интегралов по единичной сфере с плотностью распределения, полученной из статистического закона Больцмана. Далее сделаны оценки энергетических затрат, необходимых для слома механизмов закрепления доменов, и подсчитана работа внешних полей в реальном и идеальном случаях. На основании этого выведен энергетический баланс и получены определяющие соотношения для необратимых составляющих в виде уравнений в дифференциалах. Разработана схема численного решения этих уравнений для определения текущих значений необратимых искомых характеристик в заданных электрических и механических полях. Для циклических нагрузок построены диэлектрические, деформационные и пьезоэлектрические гистерезисные кривые.

    Разработанная модель может быть имплантирована в конечно-элементный комплекс для расчета неоднородных остаточных полей поляризации и деформирования с последующим определением физических модулей неоднородно поляризованной керамики как локально анизотропного тела.

  6. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

  7. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

  8. Янковская У.И., Старостенков М.Д., Захаров П.В.
    Молекулярно-динамическое исследование механических свойств кристалла платины, армированного углеродной нанотрубкой при одноосном растяжении
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1069-1080

    В этой статье рассматриваются механические свойства платины, армированной углеродной нанотрубкой (УНТ), в условиях одноосной растягивающей нагрузки посредством метода молекулярной динамики. Обзор текущих расчетных и экспериментальных исследований подчеркивает преимущества композитов, армированных углеродными нанотрубками с структурной точки зрения. Однако количественные и качественные исследования влияния углеродной нанотрубки на улучшения свойств композитов все еще редки. Выбор композита обусловлен перспективой применения платиновых сплавов во многих сферах, где они могут подвергаться механическим воздействиям, в том числе и в биосовместимых системах. Армирование платины (Pt) с помощью УНТ может обеспечить дополнительные возможности для вживления имплантатов и при этом достичь требуемых механических характеристик.

    Структура композита состояла из кристалла Pt с гранецентрированной кубической решеткой с постоянной 3,92 Å и углеродной нанотрубки. Матрица кристалла платины имеет форму куба с размерами $43,1541 Å \times 43,1541 Å \times 43,1541 Å$. Размер отверстия в середине платиновой матрицы определяется радиусом углеродной нанотрубки типа «зигзаг» (8,0), который составляет 2,6 Å. Углеродная нанотрубка помещается в отверстие радиусом 4,2 Å. При таких параметрах взаимной конфигурации наблюдался минимум энергии взаимодействия. Рассматриваемая модель содержит 320 атомов углерода и 5181 атом платины. Объемная доля углерода в композите Pt-C составляет 5,8%. На первом этапе исследования производились анализ влияния скорости деформации на соотношение «напряжение–деформация» и изменение энергии в процессе одноосного растяжения композита Pt-C.

    Анализ влияния скорости деформации показал, что предел текучести при растяжении увеличивается с увеличением скоростей деформации, а модуль упругости имеет, скорее, тенденцию к уменьшению при увеличении скорости деформации. Данная работа также демонстрирует, что по сравнению с чистой платиной модуль Юнга увеличился на 40% для Pt-C, а эластичность композита меньше на 42,3%. В целом подробно рассмотрены механизмы разрушения, включая пластическую деформацию в атомистическом масштабе.

  9. Жданова О.Л., Жданов В.С., Неверова Г.П.
    Моделирование динамики планктонного сообщества с учетом токсичности фитопланктона
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1301-1323

    Предложена трехкомпонентная модельпланк тонного сообщества с дискретным временем. Сообщество представлено зоопланктоном и двумя конкурирующими за ресурсы видами фитопланктона: токсичным и нетоксичным. Модельдв ух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух видов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из видов-конкурентов доступностью внешних ресурсов. Изъятие фитопланктона за счет питания зоопланктоном описывается трофической функцией Холлинга II типа с учетом насыщения хищника. Способность фитопланктона защищаться от хищничества и избирательность питания хищника учтены в виде ограничения потребления: зоопланктон питается только нетоксичным фитопланктоном.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего сосуществованию двух видов фитопланктона и зоопланктона, может происходитьч ерез каскад бифуркаций удвоения периода, также возникает бифуркация Неймарка – Сакера, ведущая к возникновению квазипериодических колебаний. Вариация внутрипопуляционных параметров фито- или зоопланктона может приводитьк выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. В областях мультистабильности возможна кардинальная смена как динамического режима, так и состава сообщества за счет изменения начальных условий или же текущего состава сообщества. Предложенная в данной работе трехкомпонентная модель динамики сообщества с дискретным временем, являясь достаточно простой, позволяет получитьадекв атную динамику взаимодействующих видов: возникают динамические режимы, отражающие основные свойства экспериментальной динамики. Так, наблюдается динамика характерная для модели «хищник–жертва» без учета эволюции — с отставанием динамики хищника от жертвы примерно на четвертьперио да. Рассмотрение генетической неоднородности фитопланктона, даже в случае выделения всего двух генетически различных форм: токсичного и нетоксичного, позволяет наблюдатьв модели как длиннопериодические противофазные циклы хищника и жертвы, так и скрытые циклы, при которых плотностьч исленности жертв остается практически постоянной, а плотность численности хищников колеблется, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие видов.

  10. Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.