Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'механическая система':
Найдено статей: 33
  1. Божко А.Н.
    Гиперграфовый подход в декомпозиции сложных технических систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1007-1022

    В статье рассматривается математическая модель декомпозиции сложного изделия на сборочные единицы. Это важная инженерная задача, которая влияет на организацию дискретного производства и его и оперативное управление. Приведен обзор современных подходов к математическому моделированию и автоматизированному синтезу декомпозиций. В них математическими моделями структур технических систем служат графы, сети, матрицы и др. Эти модели описывают механическую структуру как бинарное отношение на множестве элементов системы. Геометрическая координация и целостность машин и механических приборов в процессе изготовления достигаются при помощи базирования. В общем случае базирование может осуществляться относительно нескольких элементов одновременно. Поэтому оно представляет собой отношение переменной местности, которое не может быть корректно описано в терминах бинарных математических структур. Описана новая гиперграфовая модель механической структуры технической системы. Эта модель позволяет дать точную и лаконичную формализацию сборочных операций и процессов. Рассматриваются сборочные операции, которые выполняются двумя рабочими органами и заключаются в реализации механических связей. Такие операции называются когерентными и секвенциальными. Это преобладающий тип операций в современной промышленной практике. Показано, что математическим описанием такой операции является нормальное стягивание ребра гиперграфа. Последовательность стягиваний, трансформирующая гиперграф в точку, представляет собой математическую модель сборочного процесса. Приведены доказанные автором две важные теоремы о свойствах стягиваемых гиперграфов и подграфов. Введено понятие $s$-гиперграфа. $S$-гиперграфы являются корректными математическими моделями механических структур любых собираемых технических систем. Декомпозиция изделия на сборочные единицы поставлена как разрезание $s$-гиперграфа на $s$-подграфы. Задача разрезания описана в терминах дискретного математического программирования. Получены математические модели структурных, топологических и технологических ограничений. Предложены целевые функции, формализующие оптимальный выбор проектных решений в различных ситуациях. Разработанная математическая модель декомпозиции изделия является гибкой и открытой. Она допускает расширения, учитывающие особенности изделия и его производства.

  2. Янковская У.И., Старостенков М.Д., Захаров П.В.
    Молекулярно-динамическое исследование механических свойств кристалла платины, армированного углеродной нанотрубкой при одноосном растяжении
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1069-1080

    В этой статье рассматриваются механические свойства платины, армированной углеродной нанотрубкой (УНТ), в условиях одноосной растягивающей нагрузки посредством метода молекулярной динамики. Обзор текущих расчетных и экспериментальных исследований подчеркивает преимущества композитов, армированных углеродными нанотрубками с структурной точки зрения. Однако количественные и качественные исследования влияния углеродной нанотрубки на улучшения свойств композитов все еще редки. Выбор композита обусловлен перспективой применения платиновых сплавов во многих сферах, где они могут подвергаться механическим воздействиям, в том числе и в биосовместимых системах. Армирование платины (Pt) с помощью УНТ может обеспечить дополнительные возможности для вживления имплантатов и при этом достичь требуемых механических характеристик.

    Структура композита состояла из кристалла Pt с гранецентрированной кубической решеткой с постоянной 3,92 Å и углеродной нанотрубки. Матрица кристалла платины имеет форму куба с размерами $43,1541 Å \times 43,1541 Å \times 43,1541 Å$. Размер отверстия в середине платиновой матрицы определяется радиусом углеродной нанотрубки типа «зигзаг» (8,0), который составляет 2,6 Å. Углеродная нанотрубка помещается в отверстие радиусом 4,2 Å. При таких параметрах взаимной конфигурации наблюдался минимум энергии взаимодействия. Рассматриваемая модель содержит 320 атомов углерода и 5181 атом платины. Объемная доля углерода в композите Pt-C составляет 5,8%. На первом этапе исследования производились анализ влияния скорости деформации на соотношение «напряжение–деформация» и изменение энергии в процессе одноосного растяжения композита Pt-C.

    Анализ влияния скорости деформации показал, что предел текучести при растяжении увеличивается с увеличением скоростей деформации, а модуль упругости имеет, скорее, тенденцию к уменьшению при увеличении скорости деформации. Данная работа также демонстрирует, что по сравнению с чистой платиной модуль Юнга увеличился на 40% для Pt-C, а эластичность композита меньше на 42,3%. В целом подробно рассмотрены механизмы разрушения, включая пластическую деформацию в атомистическом масштабе.

  3. Кондратов Д.В., Кондратова Т.С., Попов В.С., Попова А.А.
    Моделирование гидроупругого отклика пластины, установленной на нелинейно-упругом основании и взаимодействующей с пульсирующим слоем жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 581-597

    В работе сформулирована математическая модель гидроупругих колебаний пластины на нелинейно-упрочняющемся основании, взаимодействующей с пульсирующим слоем вязкой жидкости. В предложенной модели, в отличие от известных, совместно учтены упругие свойства пластины, нелинейность ее основания, а также диссипативные свойства жидкости и инерция ее движения. Модель представлена системой уравнений двумерной задачи гидроупругости, включающей: уравнение динамики пластины Кирхгофа на упругом основании с жесткой кубической нелинейностью, уравнения Навье – Стокса, уравнение неразрывности, краевые условия для прогибов пластины, давления жидкости на торцах пластины, а также для скоростей движения жидкости на границах контакта жидкости и ограничивающих ее стенок. Исследование модели проведено методом возмущений с последующим использованием метода итерации для уравнений тонкого слоя вязкой жидкости. В результате определен закон распределения давления жидкости на поверхности пластины и осуществлен переход к интегро-дифференциальному уравнению изгибных гидроупругих колебаний пластины. Данное уравнение решено методом Бубнова – Галёркина с применением метода гармонического баланса для определения основного гидроупругого отклика пластины и фазового сдвига. Показано, что исходная задача может быть сведена к исследованию обобщенного уравнения Дуффинга, в котором коэффициенты при инерционных, диссипативных и жесткостных членах определяются физико-механическими параметрами исходной системы. Найдены основной гидроупругий отклик пластины и фазовый сдвиг, проведено их численное исследование при учете инерции движения жидкости и для ползущего движения жидкости при нелинейно- и линейно-упругом основании пластины. Результаты расчетов показали необходимостьу чета вязкости жидкости и инерции ее движения совместно с упругими свойствами пластины и ее основания как для нелинейных колебаний, так и для линейных колебаний пластины.

  4. Предложена конечно-элементная модель биомеханической системы адекватной сложности (с пространственными, оболочечными и балочными элементами), состоящая из имитатора большеберцовой кости с регенерирующей тканью в месте перелома и аппарата Илизарова. Модель позволяет задавать ортотропные упругие свойства материалов имитатора кости (областей компактной и спонгиозной тканей), вводить неоднородные жесткостные свойства регенерирующей ткани в зоне места перелома, изменять базовые геометрические и механические характеристики модели и параметры конечно-элементной сетки, а также задавать различные внешние воздействия, связанные с нагрузкой на имитатор кости и компрессией или дистракцией между репонирующими кольцами аппарата Илизарова.

    С использованием разработанных программ на командном языке APDL в конечноэлементном комплексе ANSYS проведены расчеты напряженно-деформированного состояния в зоне перелома при варьировании статических сжимающих нагрузок на имитатор кости, величин перемещений репонирующих колец аппарата Илизарова и жесткостных свойств соединительной ткани костной мозоли на различных этапах сращения перелома (гелеобразной, хрящевой, спонгиозной и нормальной костных тканей). Представленная методология и разработанные программы позволяют проводить оценки допустимых величин внешних нагрузок на костьи величин перемещений репонирующих колец аппарата Илизарова на различных этапах регенерации кости в процессе заживления, исходя из априорно задаваемых критериев допуска на максимальные характеристики напряжений в костной мозоли. Предлагаемые подходы могут бытьиспо льзованы в клинических условиях при планировании, реализации и контроле силовых режимов работы при чрескостном остеосинтезе аппаратом Илизарова.

    Просмотров за год: 3.
  5. Якушевич Л.В.
    Биомеханика ДНК: вращательные колебания оснований
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 319-328

    В данной работе изучаются вращательные колебания азотистых оснований, образующих центральную пару в коротком фрагменте ДНК, состоящем из трех пар оснований. Построен простой механический аналог фрагмента, в котором основания имитируются маятниками, а взаимодействия между основаниями — пружинками. Получен лагранжиан модельной системы и уравнения движения. Получены решения уравнений движения для однородного случая, когда рассматриваемый фрагмент ДНК состоит из одинаковых пар оснований: из пар аденин-тимин (AT) или гуанинцитозин (GC). Построены траектории модельной системы в конфигурационном пространстве.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  6. Брацун Д.А., Захаров А.П., Письмен Л.М.
    Многоуровневое математическое моделирование возникновения и роста опухоли в ткани эпителия
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 585-604

    В работе предлагается математическая модель возникновения раковых образований в двумерной ткани эпителия. Базисная модель роста эпителия описывает возникновение интенсивного движения и роста ткани при ее повреждении. Для этого в схеме расчета предусмотрена возможность деления и интеркаляции клеток. Предполагается, что движение клеток растущего эпителия вызывается волной митоген-активируемой протеинкиназы, которая в свою очередь активируется химико-механическим сигналом, распространяющимся по ткани из-за ее локального повреждения. В работе предполагается, что раковые клетки возникают из-за локального сбоя пространственной синхронизации циркадианных ритмов. Изучение эволюционной динамики модели позволяет изучить физико-химические свойства опухоли и определить связь между возникновением раковых клеток и параметрами развития всей ткани, координирующей свою эволюцию посредством обмена химико-механическими сигналами.

    Просмотров за год: 10. Цитирований: 12 (РИНЦ).
  7. В работе теоретически и экспериментально рассматривается задача об автоматическом поддержании механического равновесия неоднородно нагретой жидкости в термосифоне с помощью подсистемы, которая подавляет конвекцию посредством малых изменений ориентации системы в пространстве. Обнаружено, что чрезмерное усиление обратной связи возбуждает в системе колебания, причина которых кроется в запаздывании работы контроллера. При наличии шума колебания возникают даже тогда, когда детерминистское описание предсказывает стационарное поведение. Получено хорошее согласие между экспериментом и теорией.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
  8. Шардыко И.В., Копылов В.М., Волняков К.А.
    Разработка конструкции, моделирование и управление шарниром с переменной упругостью на основе магнитной пружины кручения
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1323-1347

    С появлением промышленных роботов робототехника приобретает значение во всемирном масштабе как в экономике, так и в науке. Однако, их возможности сильно ограничены, особенно в части выполнения контактных задач, в которых есть необходимость регулирования или по крайней мере ограничения усилия в контакте. В определенный момент было замечено, что упругость в механической цепи шарнира, считавшаяся ранее негативным фактором, в этомо тношении напротив является полезной. Данное наблюдение привело к появлению роботов с упругими шарнирами, пригодных к выполнению контактных задач и кооперативной деятельности в частности, в результате чего их распространение сегодня становится всё шире. Многие исследователи стремились реализовать подобные устройства не только в виде простейших последовательных упругих приводов, но и посредствомбо лее сложных шарниров с переменной упругостью (ШПУ), способных изменять собственную механическую жесткость. Все упругие шарниры обеспечивают в определенной мере устойчивость к ударным нагрузкам и безопасность взаимодействия с объектами внешней среды, однако изменение жесткости позволяет получить дополнительные преимущества, такие как энерго-эффективность и адаптируемость к задачам.

    В настоящей статье представлена новая реализация ШПУ, с магнитной муфтой в качестве упругого элемента. Магнитная передача является бесконтактной, и потому обладает преимуществом с точки зрения снижения чувствительности к смещению и рассогласованию осей. Описание модели трения также упрощается. Кроме того, данная муфта обладает характеристикой жесткости, которая не только не возрастает резко с повышением нагрузки, но становится более плавной, и даже снижается после точки максимума. Вследствие этого, при достижении максимального момента, муфта проскальзывает, после чего положение равновесия уже определяется новой парой полюсов. В итоге данное решение снижает риск механического повреждения. В статье подробно рассмотрен процесс разработки шарнира, представлена его математическая модель. Также предложена реализация системы управления шарниром и проведено компьютерное моделирование, подтверждающее принятые в разработке решения.

  9. Сергиенко А.В., Акименко С.С., Карпов А.А., Мышлявцев А.В.
    Оценка влияния простейшего типа многочастичных взаимодействий на примере решеточной модели адсорбционного слоя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 445-458

    Самоорганизация молекул на твердой поверхности является одним из перспективных направлений по созданию материалов с уникальными магнитными, электрическими и оптическими свойствами. Они могут широко применяться в таких областях, как электроника, оптоэлектроника, катализ и биология. Однако на структуру и физико-химические свойства адсорбирующихся молекул оказывает влияние множество параметров, которые необходимо учитывать при изучении процесса самоорганизации молекул. В связи с этим экспериментальное исследование свойств новых материалов данного типа оказывается дорогостоящим, а также довольно часто его проведение затруднительно по различным причинам. В таких ситуациях целесообразнее воспользоваться методами математического моделирования. В рассматриваемых адсорбционных системах одним из параметров является многочастичное взаимодействие, которое часто не учитывается в моделировании из-за усложнения расчетов. В данной работе мы провели оценку влияния многочастичных взаимодействий на общую энергию системы с помощью метода трансфер-матрицы и программного комплекса Materials Studio. За основу была взята модель моноцентровой адсорбции молекул на треугольной решетке с учетом ближайших взаимодействий. Для этой модели были построены фазовые диаграммы в основном состоянии и проведены расчеты ряда термодинамических характеристик (степени покрытия $\theta$, энтропии $S$, восприимчивости $\xi $) при ненулевых температурах. Было обнаружено образование всех четырех упорядоченных структур (решеточный газ с $\theta=0$, $(\sqrt{3} \times \sqrt{3}) R30^{\circ}$ с $\theta = \frac{1}{3}$, $(\sqrt{3} \times \sqrt{3})R^{*}30^{\circ}$ с $\theta = \frac{2}{3}$, плотнейшая фаза с $\theta = 1$) в системе, учитывающей исключительно двухчастичные взаимодействия, и отсутствие фазы  $(\sqrt{3}\times \sqrt{3}) R30^\circ$ при учете только трехчастичных взаимодействий. На основе квантово-механических расчетов на примере атомистической модели адсорбционного слоя тримезиновой кислоты мы определили, что в такой системе вклад многочастичного характера взаимодействий составляет 11,44% от энергии двухчастичных взаимодействий. При таких значениях в решеточной модели возникают только количественные отличия, проявляющиеся в смещении области перехода из структуры $(\sqrt{3} \times \sqrt{3}) R^{*}30^\circ$ в плотнейшую фазу вправо на 38,25% при $\frac{\varepsilon}{RT} = 4$ и влево на 23,46% при $\frac{\varepsilon}{RT} = −2$.

  10. Орел В.Р., Тамбовцева Р.В., Фирсова Е.А.
    Влияние сократимости сердца и его сосудистой нагрузки на частоту сердечных сокращений у спортсменов
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 323-329

    Частота сердечных сокращений (ЧСС) является наиболее доступным для измерения показателем. С целью контроля индивидуальной реакции на нагрузочность физических упражнений ЧСС измеряется при выполнении спортсменами мышечной работы разных типов (работа на силовых тренажерах, различные виды тренировочных и соревновательных нагрузок). По величине ЧСС и динамике ее изменения при мышечной работе и восстановлении можно объективно судить о функциональном состоянии сердечно-сосудистой системы спортсмена, об уровне его индивидуальной физической работоспособности, а также об адаптивной реакции на ту или иную физическую нагрузку. Однако ЧСС не является самостоятельным детерминантом физического состояния спортсмена. Величина ЧСС формируется в результате взаимодействия основных физиологических механизмов, определяющих гемодинамический режим сердечного выброса. Сердечный ритм зависит, с одной стороны, от сократимости сердца, от венозного возврата, от объемов предсердий и желудочков сердца, а с другой стороны — от сосудистой нагрузки сердца, основными компонентами которой являются эластическое и периферическое сопротивление артериальной системы. Величины сосудистых сопротивлений артериальной системы зависят от мощности мышечной работы и времени ее выполнения. Чувствительность ЧСС к изменениям сосудистой нагрузки сердца и его сократимости определялась у спортсменов по результатам парного регрессионного анализа одновременно зарегистрированных данных ЧСС, периферического $(R)$ и эластического $(E_a)$ сопротивлений (сосудистая нагрузка сердца), а также механической мощности $(W)$ сердечных сокращений (сократимость сердца). Коэффициенты чувствительности и коэффициенты парной корреляции между ЧСС и показателями сосудистой нагрузки и сократимости левого желудочка сердца спортсмена определялись в покое и при выполнении мышечной работы на велоэргометре. Показано, что с ростом мощности велоэргометрической нагрузки и увеличением ЧСС возрастают также коэффициенты корреляции и чувствительности между ЧСС и показателями сосудистой нагрузки сердца $(R, E_a)$ и его сократимости $(W)$.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.