Текущий выпуск Номер 5, 2020 Том 12
Результаты поиска по 'клеточные автоматы':
Найдено статей: 20
  1. Субботина А.Ю., Хохлов Н.И.
    Реализация клеточных автоматов «игра “Жизнь”» и клеточного автомата Кохомото-Ооно с применением технологии MPI
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 319-322

    Данная работа является анализом результатов, полученных участниками летней школы по высокопроизводительным вычислениям МФТИ-2010 во время практикума по технологии MPI. В качестве проекта была предложена трехмерная версия игры Конвея «Жизнь». Разобраны основные способы решения, используемые участниками при разработке, приведена их теоретическая и практическая оценка по масштабируемости.

    Просмотров за год: 11.
  2. Зубкова Е.В., Жукова Л.А., Фролов П.В., Шанин В.Н.
    Работы А. С. Комарова по клеточно-автоматному моделированию популяционно-онтогенетических процессов у растений
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 285-295

    Рассмотрены возможности моделирования в технике клеточных автоматов применительно к травянистым растениям и кустарничкам. Приводятся основные положения дискретного описания онтогенезов растений, на которых основывается математическое моделирование. В обзоре обсуждаются основные результаты, полученные с использованием моделей и раскрывающие закономерности функционирования ценопопуляций и сообществ. Описана модель CAMPUS и результаты компьютерного эксперимента по разрастанию двух клонов брусники с разной геометрией побегов. Публикация посвящена работам профессора А. С. Комарова, основоположника направления; дан список его основных публикаций по этой тематике.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  3. Алексеенко А.Е., Казённов А.М.
    Реализация клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 323-326

    В данной статье проанализирован опыт преподавания курса «Программирование на CUDA и OpenCL» для участников ежегодной межвузовской молодежной школы по высокопроизводительным вычислениям МФТИ-2010. В статье разобраны как содержимое лекций и семинарские задачи, так и особенности преподнесения материала. Обсуждаются результаты, полученные учащимися при выполнении практических задач. Приводится сравнение быстродействия различных алгоритмов реализации клеточных автоматов «игра “Жизнь”» с применением технологий CUDA и OpenCL.

    Просмотров за год: 9. Цитирований: 3 (РИНЦ).
  4. Белотелов Н.В., Коноваленко И.А.
    Моделирование влияния подвижности особей на пространственно-временную динамику популяции на основе компьютерной модели
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 297-305

    В статье предложена компьютерная модель, описывающая пространственно-временную динамику популяции, взаимодействующей с возобновимым ресурсом. Подробно описан жизненный цикл особи. Предложен алгоритм пространственного перемещения особей по ареалу, учитывающий пищевую и социальную активность. Описаны вычислительные эксперименты с моделью, которые имитируют движения стада животных по ареалу, а также описан модельный эксперимент, когда групповой тип поведения животных вследствие изменения характеристик окружающей среды становится индивидуальным, после чего из-за изменения в параметрах окружающей среды и поведении животных формируется стадо, которое в дальнейшем переходит снова к групповому типу поведения.

    Просмотров за год: 2. Цитирований: 3 (РИНЦ).
  5. Белотелов Н.В., Коноваленко И.А., Назарова В.М., Зайцев В.А.
    Некоторые особенности групповой динамики в агентной модели «ресурс–потребитель»
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 833-850

    В работе исследуются особенности групповой динамики особей-агентов в компьютерной модели популяции животных, взаимодействующих между собой и с возобновимым ресурсом. Такого типа динамика были ранее обнаружены в работе [Белотелов, Коноваленко, 2016]. Модельная популяция состоит из совокупности особей. Каждая особь характеризуется своей массой, которая отождествляется с энергией. В ней подробно описана динамика энергетического баланса особи. Ареал обитания моделируемой популяции представляет собой прямоугольную область, на которой равномерно произрастает ресурс (трава).

    Описываются различные компьютерные эксперименты, проведенные с моделью при различных значениях параметров и начальных условиях. Основной целью проведения этих вычислительных экспериментов было изучение групповой (стадной) динамики особей. Выяснилось, что в достаточно широком диапазоне значений параметров и при введении пространственных неоднородностей ареала групповой тип поведения сохраняется. Численно были найдены значения параметров модельной популяции, при которых возникает режим пространственных колебаний численности. А именно, в модельной популяции периодически групповое (стадное) поведение животных сменяется на равномерное по пространству распределение, которое через определенное количество тактов вновь становится групповым. Проведены численные эксперименты по предварительному анализу факторов, влияющих на период этих решений. Оказалось, что ведущими параметрами, влияющими на частоту и амплитуду, а также на количество групп, являются подвижность особей и скорость восстановления ресурса. Проведены численные эксперименты по исследованию влияния на групповое поведение параметров, определяющих нелокальное взаимодействие между особями популяции. Обнаружено, что режимы группового поведения сохраняются достаточно длительное время при исключении факторов рождаемости особей. Подтверждено, что нелокальность взаимодействия между особями является ведущей при формировании группового поведения.

    Просмотров за год: 32.
  6. Кондратьев М.А.
    Методы прогнозирования и модели распространения заболеваний
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882

    Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.

    Просмотров за год: 71. Цитирований: 19 (РИНЦ).
  7. Исследование логических детерминированных клеточноавтоматных моделей популяционной динамики позволяет выявлять детальные индивидуально-ориентированные механизмы функционирования экосистем. Выявление таких механизмов актуально в связи с проблемами, возникающими вследствие переэксплуатации природных ресурсов, загрязнения окружающей среды и изменения климата. Классические модели популяционной динамики имеют феноменологическую природу, так как являются «черными ящиками». Феноменологические модели принципиально затрудняют исследование локальных механизмов функционирования экосистем. Мы исследовали роль плодовитости и длительности восстановления ресурсов в механизмах популяционного роста, используя четыре модели экосистемы с одним видом. Эти модели являются логическими детерминированными клеточными автоматами и основаны на физической аксиоматике возбудимой среды с восстановлением. Было выявлено, что при увеличении времени восстановления ресурсов экосистемы происходит катастрофическая гибель популяции. Показано также, что большая плодовитость ускоряет исчезновения популяции. Исследованные механизмы важны для понимания механизмов устойчивого развития экосистем и сохранения биологического разнообразия. Обсуждаются перспективы представленного модельного подхода как метода прозрачного многоуровневого моделирования сложных систем.

    Просмотров за год: 16. Цитирований: 3 (РИНЦ).
  8. Иванов С.И., Матасов А.В., Меньшутина Н.В.
    Модель деформации полимерных нанокомпозитов на основе клеточных автоматов
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 131-136

    Данная статья посвящена моделированию процесса деформации полимерных нанокомпозитов, содержащих «жесткие» и «мягкие» включения, с использованием клеточных автоматов и параллельных вычислений. В статье описан алгоритм расчета по модели, приведены сравнения с экспериментальными данными и описан программный комплекс для проведения численного эксперимента.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  9. Степанцов М.Е.
    Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572

    Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.

    Просмотров за год: 8. Цитирований: 1 (РИНЦ).
  10. Ершов Н.М., Попова Н.Н.
    Естественные модели параллельных вычислений
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785

    Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.

    Просмотров за год: 17. Цитирований: 2 (РИНЦ).
Страницы: предыдущая

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus