Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'дифференциальное уравнение':
Найдено статей: 139
  1. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Просмотров за год: 5.
  2. В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  3. Фомин А.А., Фомина Л.Н.
    О сходимости неявного итерационного полинейного рекуррентного метода решения систем разностных эллиптических уравнений
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 857-880

    Работа посвящена теоретическому обоснованию неявного итерационного полинейного рекуррентного метода решения систем разностных уравнений, которые возникают при аппроксимации двумерных эллиптических дифференциальных уравнений на регулярной сетке. Высокая эффективность этого метода практически подтверждена при решении сложных тестовых задач, а также задач течения и теплообмена вязкой несжимаемой жидкости. Однако теоретические положения, объясняющие высокую скорость сходимости и устойчивость метода, до сих пор оставались за кадром внимания, что и послужило причиной проведения настоящего исследования. В работе подробно излагается процедура эквивалентных и приближенных преобразований исходной системы линейных алгебраических уравнений (СЛАУ) как в матрично-векторной форме, так и виде расчетных формул метода. При этом для наглядности изложения материала ключевые моменты преобразований иллюстрируются схемами изменения разностных шаблонов, отвечающих преобразованным уравнениям. Конечная цель процедуры преобразований — получение канонической формы записи метода, из которого следует его корректность в случае сходимости решения. На основе анализа структур и элементных составов матричных операторов проводится оценка их норм и, соответственно, доказывается сходимость метода для произвольных начальных векторов.

    В специальном случае слабых ограничений на искомое решение производится оценка нормы оператора перехода. Показывается, что с ростом размерности матрицы этого оператора величина его нормы уменьшается пропорционально квадрату (или кубу, в зависимости от версии метода) шага сеточного разбиения области решения задачи. С помощью простых оценок получено необходимое условие устойчивости метода. Также даются рекомендации относительно выбора по порядку величины оптимального итерационного параметра компенсации. Теоретические выводы проиллюстрированы результатами решения тестовых задач. Показано, что при увеличении размерности сеточного разбиения области решения количество итераций, необходимых для достижения заданной точности решения, при прочих равных условиях уменьшается. Также продемонстрировано, что если слабые ограничения на решение нарушены при выборе его начального приближения, то в полном соответствии с полученными теоретическими результатами скорость сходимости метода существенно уменьшается.

    Просмотров за год: 15. Цитирований: 1 (РИНЦ).
  4. Зыза А.В.
    Компьютерное исследование полиномиальных решений уравнений динамики гиростата
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 7-25

    В работе исследуются полиномиальные решения уравнений движения гиростата под действием потенциальных и гироскопических сил и уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. В математической постановке каждая из указанных задач описывается системой нелинейных обыкновенных дифференциальных уравнений, правые части которых содержат пятнадцать постоянных параметров, характеризующих распределение масс гиростата, потенциальные и непотенциальные силы, действующие на гиростат. Рассмотрены полиномиальные решения двух классов: Стеклова–Ковалевского–Горячева и Докшевича. Структура инвариантных соотношений для полиномиальных решений показывает, что, как правило, к указанным выше пятнадцати параметрам добавляется еще не менее двадцати пяти параметров задачи. При решении такой многопараметрической задачи в статье наряду с аналитическими методами применяются численные методы, основанные на вычислительных математических пакетах. Исследование условий существования полиномиальных решений проведено в два этапа. На первом этапе выполнена оценка максимальных степеней рассмотренных полиномов и получена нелинейная алгебраическая система на параметры дифференциальных уравнений и полиномиальных решений. На втором этапе с помощью компьютерных вычислений исследованы условия разрешимости полученных систем и изучены условия действительности построенных решений.

    Для уравнений Кирхгофа–Пуассона построены два новых полиномиальных решения. Первое решение характеризуется следующим свойством: квадраты проекций угловой скорости на небарецентрические оси являются многочленами пятой степени от компоненты вектора угловой скорости на барецентрическую ось, которая выражается в виде гиперэллиптической функции времени. Второе решение характеризуется тем, что первая компонента угловой скорости является многочленом второго порядка, вторая компонента—многочленом третьего порядка, квадрат третьей компоненты—многочленом шестого порядка по вспомогательной переменной, которая является обращением эллиптического интеграла Лежандра.

    Третье решение построено для уравнений движения гиростата в магнитном поле с учетом эффекта Барнетта–Лондона. Для него структура такова: первая и вторая компоненты вектора угловой скорости—многочлены второй степени, квадрат третьей компоненты—многочлен четвертой степени по вспомогательной переменной, которая находится обращением эллиптического интеграла Лежандра.

    Все построенные решения не имеют аналогов в динамике твердого тела с неподвижной точкой.

    Просмотров за год: 15.
  5. Строганов А.В., Аристов В.В.
    Вероятностные аспекты метода «компьютерной аналогии» для решения дифференциальных уравнений
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 21-31

    Развивается и обосновывается метод, позволяющий получить явную форму решения в виде отрезков рядов по степеням шага аргумента. Формализуется алгоритм, элементы которого используют аналогию с представлением и обработкой чисел в компьютере: ограничение в разрядной сетке и переброс разрядов. При перебросе разряда выявляются фрактально-стохастические свойства алгоритма, дающие возможность осреднять неизвестные промежуточные шаги в старших разрядах. Строятся решения нелинейных дифференциальных уравнений и системы уравнений.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  6. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Цитирований: 1 (РИНЦ).
  7. Кривовичев Г.В.
    Модифицированный вариант метода решеточных уравнений Больцмана для расчета течений вязкой несжимаемой жидкости
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 365-381

    Предложен модифицированный вариант метода решеточных уравнений Больцмана для расчета течений вязкой несжимаемой жидкости. Метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее о мгновенной максвеллизации функций распределения. Метод основан на использовании явных схем и не приводит к сложностям при распараллеливании вычислений. С помощью метода фон Неймана показана устойчивость метода в широком диапазоне изменения входного параметра. Эффективность предложенного метода показана при решении задачи о плоском течении в каверне.

    Цитирований: 5 (РИНЦ).
  8. Чуйко С.М., Несмелова (Старкова) О.В., Сысоев Д.В.
    Нелинейная матричная краевая задача в случае параметрического резонанса
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 821-833

    Найдены необходимые и достаточные условия существования решений нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. Построена сходящаяся итерационная схема для нахождения приближений к решению нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. В качестве примера применения построенной итерационной схемы найдены приближения к решениями периодической краевой задачи для уравнения типа Риккати с параметрическим возмущением. Для контроля точности найденных приближений к решениямперио дической краевой задачи для уравнения типа Риккати использованы невязки этих приближений.

    Просмотров за год: 2.
  9. В приближении однородной намагниченности построена математическая модель трехслойной ячейки памяти MRAM c осью анизотропии, расположенной перпендикулярно запоминающему ферромагнитному слою ячейки (перпендикулярная анизотропия). Предполагается, что первоначально намагниченность свободного слоя ячейки ориентирована вдоль оси анизотропии и соответствует состоянию «нуль». Одновременное мгновенное включение спин-поляризованного тока и магнитного поля воздействует на намагниченность свободного слоя и может перевести ее в противоположное положение, соответствующее состоянию «единица». Математическое описание эффекта основано на классическом векторном уравнении Ландау–Лифшица с диссипативным членом в форме Гильберта. В нашей модели учтены взаимодействия намагниченности с внешним магнитным полем и эффективными полями анизотропии и размагничивания, а также с током инжекции в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от управляющих параметров: величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Установлено, что в данной системе, в отличие от системы с продольной анизотропией, дополнительные состояния равновесия отсутствуют. Проведен анализ устойчивости основных состояний равновесия по первому приближению. Построены бифуркационные диаграммы, характеризующие типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно, методом Рунге–Кутты, построены траектории переключения. Найдены комбинации управляющих параметров, при которых переключение невозможно. Найдены области существования устойчивых и неустойчивых предельных циклов системы. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Проведено сравнение значений порогового тока в моделях с продольной и перпендикулярной анизотропией при нулевом магнитном поле и показано, что в модели с перпендикулярной анизотропией ток переключения почти на порядок ниже, чем в модели с продольной анизотропией.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  10. Батгэрэл Б., Никонов Э.Г., Пузынин И.В.
    Процедура вывода явных, неявных и симметричных симплектических схем для численного решения гамильтоновых систем уравнений
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 861-871

    При моделировании методами классической молекулярной динамики поведения системы частиц используются уравнения движения в ньютоновской и гамильтоновой формулировке. При использовании уравнений Ньютона для получения координат и скоростей частиц системы, состоящей из $N$ частиц, требуется на каждом временном шаге в трехмерном случае решить $3N$ обыкновенных дифференциальных уравнений второго порядка. Традиционно для решения уравнений движения молекулярной динамики в ньютоновской формулировке используются численные схемы метода Верле. Для сохранения устойчивости численных схем Верле на достаточно больших интервалах времени приходится уменьшать шаг интегрирования. Это приводит к существенному увеличению объема вычислений. В большинстве современных пакетов программ молекулярной динамики для численного интегрирования уравнений движения используют схемы метода Верле с контролем сохранения гамильтониана (энергии системы) по времени. Для уменьшения времени вычислений при молекулярно-динамических расчетах можно использовать два дополняющих друг друга подхода. Первый основан на совершенствовании и программной оптимизации существующих пакетов программ молекулярной динамики с использованием векторизации, распараллеливания, спецпроцессоров. Второй подход основан на разработке эффективных методов численного интегрирования уравнений движения. В работе предложена процедура построения явных, неявных и симметричных симплектических численных схем с заданной точностью аппроксимации относительно шага интегрирования для решения уравнений движения молекулярной динамики в гамильтоновой форме. В основе подхода для построения предложенной в работе процедуры лежат следующие положения: гамильтонова формулировка уравнений движения, использование разложения точного решения в ряд Тейлора, использование для вывода численных схем аппарата производящих функций для сохранения геометрических свойств точного решения. Численные эксперименты показали, что полученная в работе симметричная симплектическая схема третьего порядка точности сохраняет в приближенном решении основные свойства точного решения, является более устойчивой по шагу аппроксимации и более точно сохраняет гамильтониан системы на большом интервале интегрирования, чем численные схемы метода Верле второго порядка.

    Просмотров за год: 11.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.