Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Молекулярно-динамическое моделирование процессов взаимодействия водяного пара с несквозными порами цилиндрического типа
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 493-501Просмотров за год: 9.Теоретические и экспериментальные исследования взаимодействия водяного пара с пористыми материалами проводятся как на макро-, так и на микроуровне. На макроуровне исследуется влияние структуры расположения индивидуальных пор на процессы взаимодействия водяного пара с пористым материалом как сплошной средой. На микроуровне исследуется зависимость характеристик взаимодействия водяного пара с пористой средой от геометрии и размеров индивидуальной поры.
В данной работе проведено исследование посредством математического моделирования процессов взаимодействия водяного пара с индивидуальной несквозной порой цилиндрического типа. Вычисления производились с использованием модели гибридного типа, сочетающей в себе молекулярно-динамический и макродиффузионный подходы для описания взаимодействия водяного пара c индивидуальной порой. Исследовались процессы эволюции к состоянию термодинамического равновесия макроскопических характеристик системы, таких как температура, плотность, давление, в зависимости от внешних по отношению к поре условий. Проведено исследование зависимости параметров эволюции от распределения значений коэффициента диффузии в поре, полученного в результате молекулярно-динамического моделирования. Актуальность данных исследований обусловлена тем, что все используемые для моделирования влаго- и теплопроводности методы и программы основаны на применении уравнений переноса в пористом материале (как сплошной среде) с известными заранее значениями коэффициентов переноса, которые, как правило, получены экспериментально.
-
Математическое моделирование тенсегрити-роботов с жесткими стержнями
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 821-830В работе рассматривается вопрос математического моделирования робототехнических структур на основе напряженно-связных конструкций, известных в англоязычных источниках как tensegrity structures (тенсегрити-структуры). Определяющим свойством таких конструкций является то, что образующие их элементы работают только на сжатие или растяжение, что позволяет использовать материалы и конструктивные решения для выполнения этих элементов, минимизирующие вес структуры, сохраняя ее прочность.
Тенсегрити-структуры отличаются рядом свойств, важных для коллаборативной робототехники, задач разведывания и движения в недетерминированных средах: естественной податливостью, компактностью при транспортировке, малым весом при значительной удароустойчивости и жесткости. При этом открытыми остаются многие вопросы управления такими структурами, что в свою очередь связано со сложностью описания их динамики.
В работе предложен подход к описанию и составлению динамических уравнений для таких конструкций, основанный на описании динамики второго порядка декартовых координат элементов структуры (стержней), динамики первого порядка для угловых скоростей стержней и динамики первого порядка для кватернионов, используемых для описания ориентации стержней. Предложен подход к численному решению составленных динамических уравнений. Предложенные методы реализованы в виде свободно распространяемого математического пакета с открытым исходным кодом.
В работе продемонстрировано, как разработанный программный комплекс может использоваться для моделирования динамики и определения режимов работы тенсегрити-структур. Рассмотрен пример тенсегрити-структуры с тремя жесткими стержнями и девятью упругими элементами, работающими на растяжение (тросами), движущейся в невесомости. Показаны особенности динамики структуры в процессе достижения положения равновесия, определены области начальных значений параметров ориентации стержней, при которых структура работает в штатном режиме, и значения, при которых растяжение тросов превышает выбранное критическое значение или происходит провисание тросов. Полученные результаты могут непосредственно использоваться при анализе характера пассивных динамических движений роботов, основанных на трехзвенной тенсегрити-структуре, рассмотренный в работе; предложенные методы моделирования и разработанное программное обеспечение пригодны для моделирования значительного многообразия тенсегрити-роботов.
-
Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.
-
Влияние диффузии и конвекции на динамику хемостата
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 121-129В работе рассматривается популяционная динамика, описываемая модифицированной моделью хемостата, в которую включены диффузия, хемотаксис и нелокальные конкурентные потери. Для учета воздействия внешнего окружения экосистемы на популяцию, при построении численных решений в систему уравнений модели включались случайные параметры. С помощью компьютерного моделирования выявлено три динамических режима, зависящих от значений параметров системы: переход от начального состояния к пространственно-однородному стационарному состоянию, к пространственно-неоднородному распределению популяционной концентрации и к элиминации популяционной концентрации.
Ключевые слова: хемостат, диффузия, конвекция, популяционная динамика, нелокальные конкурентные потери.Просмотров за год: 1. -
О динамике косимметричных систем хищников и жертв
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813Просмотров за год: 12. Цитирований: 3 (РИНЦ).Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.
Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.
Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.
-
Техника проведения расчетов динамики показателей олигополистических рынков на основе операционного исчисления
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 949-963В настоящее время наиболее распространенный подход к расчету оптимальных по Нэшу–Курно стратегий участников олигополистических рынков, а следовательно и показателей таких рынков, связан с использованием линейных динамических игр с квадратичными критериями и решением обобщенных матричных уравнений Риккати.
Другой подход к исследованию оптимальных разомкнутых (open-loop) стратегий участников олигополистических рынков, развиваемый автором, основан на использовании операционного исчисления (в частности, Z-преобразования). Этот подход позволяет получить экономически приемлемые решения для более широкого диапазона изменения параметров используемых моделей, чем при применении методов, основанных на решении обобщенных матричных уравнений Риккати. Метод отличается относительной простотой вычислений и необходимой для экономического анализа наглядностью. Одним из его достоинств является то, что во многих важных для экономической практики случаях он, в отличие от традиционного подхода, обеспечивает возможность проведения расчетов с использованием широко распространенных электронных таблиц, что позволяет проводить исследование перспектив развития олигополистических рынков широкому кругу специалистов и потребителей.
В статье рассматриваются практические аспекты определения оптимальных по Нэшу–Курно стратегий участников олигополистических рынков на основе операционного исчисления, в частности техника проведения расчетов оптимальных по Нэшу–Курно стратегий в среде Excel. В качестве иллюстрации возможностей предлагаемых методов расчета исследуются примеры, близкие к практическим задачам прогнозирования показателей рынков высокотехнологичной продукции.
Полученные автором для многочисленных примеров и реальных экономических систем результаты расчетов, как с использованием полученных соотношений на основе электронных таблиц, так и с использованием расширенных уравнений Риккати, оказываются весьма близкими. В большинстве рассмотренных практических задач отклонение рассчитанных в соответствии с двумя подходами показателей, как правило, не превышает 1.5–2 %. Наибольшая величина относительных отклонений (до 3–5 %) наблюдается в начале периода прогнозирования. В типичных случаях период сравнительно заметных отклонений составляет 3–5 моментов времени. После переходного периода наблюдается практически полное совпадение значений искомых показателей при использовании обоих подходов.
-
Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.
Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.
Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.
-
От однородного к неоднородному электронному аналогу ДНК
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.
-
Мировая динамика как объект моделирования (к пятидесятилетию первого доклада Римскому клубу)
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1371-1394В последней четверти ХХ века характер глобального демографического и экономического развития стал быстро изменяться: непрерывно ускорявшийся рост основных характеристик, имевший место на протяжении предыдущих двухсот лет, сменился на резкое их торможение. В условиях этих изменений возрастает роль долгосрочного прогноза мировой динамики. При этом прогноз должен основываться не на инерционном проецировании прошлых тенденций в будущие периоды, а на математическом моделировании фундаментальных закономерностей исторического развития. В статье изложены предварительные результаты исследований по математическому моделированию и прогнозированию мировой демографо-экономической динамики, основанные на таком подходе. Предложены базовые динамические уравнения, отражающие эту динамику, обоснована модификация этих уравнений применительно к разным историческим эпохам. Для каждой исторической эпохи на основе анализа соответствующей ей системы уравнений определялся фазовый портрет и проводился анализ его особенностей. На основе этого анализа делались выводы о закономерностях мирового развития в рассматриваемый период.
Показано, что для моделирования исторической динамики важным является математическое описание развития технологий. Предложен способ описания технологической динамики, на основе которого предложены соответствующие математические уравнения.
Рассмотрены три стадии исторического развития: стадия аграрного общества (до начала XIX века), стадия индустриального общества (XIX–ХХ века) и современная эпоха. Предложенная математическая модель показывает, что для аграрного общества характерна циклическая демографо-экономическая динамика, в то время как для индустриального общества характерен рост демографических и экономических характеристик, близкий к гиперболическому.
Результаты математического моделирования показали, что человечество в настоящее время переходит на принципиально новую фазу исторического развития. Происходит торможение роста и переход человеческого общества в новое фазовое состояние, облик которого еще не определен. Рассмотрены различные варианты дальнейшего развития.
-
Динамические свойства полинуклеотидной цепи, состоящей из двух неодинаковых однородных последовательностей, разделенных границей
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 241-253Просмотров за год: 1. Цитирований: 3 (РИНЦ).Для исследования динамики неоднородной полинуклеотидной цепочки ДНК была использована упрощенная Y-модель с нулевым диссипативным членом. На основе этой модели с помощью численных методов были проведены расчеты, демонстрирующие поведение нелинейного конформационного возмущения (кинка), распространяющегося вдоль неоднородной полинуклеотидной цепи, состоящей из двух разных однородных последовательностей нуклеотидов. Как показал численный анализ, нелинейное возмущение в виде кинка, распространяющееся вдоль рассматриваемой модельной молекулы ДНК, может вести себя тремя разными способами. При достижении границы между двумя однородными последовательностями, состоящими из разных типов оснований, кинк может: а) отразиться, б) пройти границу с ускорением (увеличить скорость), в) пройти границу с замедлением (уменьшить скорость).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"