Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Эффекты воздействия электрического поля на химические структуры
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718Просмотров за год: 8.Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.
-
Высокопроизводительные вычисления на гибридных системах: будут ли решены «задачи большого вызова»?
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 429-437Просмотров за год: 7. Цитирований: 8 (РИНЦ).На примере расчета течений проводится анализ возможностей современных гибридных распределенных вычислительных систем для расчета «задач большого вызова». Приводятся соображения, что только многоуровневый комплексный подход к такой проблеме позволит эффективно масштабировать подобные задачи. Подход подразумевает использование новых математических моделей процессов переноса, разделение на динамическом уровне явлений переноса и внутренних процессов и использование новых парадигм программирования, учитывающих особенности современных гибридных систем.
-
Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671Просмотров за год: 2. Цитирований: 1 (РИНЦ).Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.
-
Разработка математических моделей трещин для численного решения задач сейсморазведки с применением сеточно-характеристического метода
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 911-925Просмотров за год: 9.Данная статья посвящена описанию разработанных математических моделей трещин, которые могут быть применены для численного решения задач сейсморазведки с использованием сеточно- характеристического метода на неструктурированных треугольных (в двумерном случае) и тетраэдральных (в трехмерном случае) сетках. Такой подход позволяет корректно обсчитывать динамические процессы в условиях неоднородностей в области интегрирования. В основе разработанных моделей неоднородностей лежит концепция бесконечно-тонкой трещины — трещина задается в виде контактной границы. Такой подход заметно сокращает потребление вычислительных ресурсов за счет отсутствия необходимости задания сетки внутри трещины. В то же время он позволяет задавать трещину дискретно в области интегрирования, что дает возможность наблюдать качественно новые эффекты, которые невозможно получить с применением эффективных моделей трещиноватости, активно используемых в вычислительной сейсмике.
Основной задачей при разработке моделей было получение максимального точного результата. Разрабатывались модели, позволяющие получить отклик, близкий к отклику реально существующей трещины в геологической среде. Рассматривались газонасыщенные, флюидонасыщенные трещины, слипшиеся трещины, частично слипшиеся трещины, а также трещины с заданием сил динамического трения. Поведение трещины определялось характером задаваемого условия на контактной границе.
Пустые трещины задавались условием свободной границы. Такое условие давало возможность полного отражения от трещины волнового фронта. Флюидонасыщенность обеспечивало условие свободного скольжения на контактной границе. При таком условии наблюдалось полное прохождение продольных волн через трещину и отражение поперечных. На слипшихся трещинах использовалось условие полного слипания. Для реальных трещин, в которых расстояние между створками не равномерное и местами происходит соприкосновение (слипание) створок, была предложена модель частично слипшейся трещины. На разных точках контактной границы трещины задавались разные условия: условия скольжения (при флюидонасыщении трещины) и слипания, свободной границы (при газонасыщении трещины) и слипания. Почти такой же эффект достигается использованием модели трещины с условием динамического трения. Однако ее существенным недостатком является невозможность задания доли слипшейся поверхности трещины в силу того, что коэффициент трения может принимать значения от нуля до бесконечности. Этого недостатка лишена модель частично слипшейся трещины.
-
Исследование взаимосвязей размерных и продукционных характеристик фито- и зоопланктона в Вислинском и Куршском заливах Балтийского моря. Часть 1. Статистический анализ данных многолетних наблюдений и разработка структуры математической модели трофической цепи планктона
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 211-246В данной работе исследованы статистические взаимосвязи между размерными и продукционными характеристиками фито- и зоопланктона, обитающего в водах Вислинского и Куршского заливов Балтийского моря. Исследования фито- и зоопланктона в пределах российских частей акваторий Вислинского и Куршского заливов проводили ежемесячно (с апреля по ноябрь) в рамках программы многолетнего мониторинга состояния экосистем заливов. Размерная структура планктонных организмов — основа понимания развития продукционных процессов, механизмов формирования видового разнообразия планктона и функционирования экосистем заливов. По результатам работы установлено, что максимальная скорость фотосинтеза и величина интегральной первичной продукции меняются по степенному закону с изменением среднего ценотического объема клеток фитопланктона. Полученный результат показывает, что чем меньше размер клеток водорослей в фитопланктонных сообществах, тем активнее в них протекают процессы метаболизма и тем эффективнее усваивается солнечная энергия. Показано, что формирование видового разнообразия планктона в экосистемах заливов самым тесным образом связано и с размерной структурой планктонных сообществ, и с особенностями развития продукционных процессов. Предложена структура пространственно однородной математической модели планктонной трофической цепи для экосистем заливов, учитывающая размерные спектры и характеристики фито- и зоопланктона. Параметры модели — размерно-зависимые показатели, аллометрически связанные со средними объемами клеток и организмов в разных диапазонах их размеров. В модели предложен алгоритм изменения во времени коэффициентов предпочтения в питании зоопланктонных организмов. Разработанная размерно-зависимая математическая модель водных экосистем позволяет учесть воздействие турбулентного обмена на размерную структуру и временную динамику планктонной пищевой цепи Вислинского и Куршского заливов. Модель может быть использована для исследования различных режимов динамического поведения планктонной системы в зависимости от изменений значений ее параметров и внешних воздействий, а также для количественной оценки перераспределения потоков вещества в экосистемах заливов.
Ключевые слова: экосистема, биогенные вещества, фитопланктон, зоопланктон, планктонный детрит, размерная структура, максимальная скорость фотосинтеза, интегральная первичная продукция, продукция зоопланктона, аллометрическое масштабирование, индекс видового разнообразия Шеннона, математическое моделирование, экологическая имитационная модель, турбулентный обмен.Просмотров за год: 9. -
Идентификация управляемого объекта по частотным характеристикам, полученным экспериментально на нейросетевой динамической модели системы управления
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 729-740Просмотров за год: 10.Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.
-
Высокоскоростное внедрение. Дискретно-элементное моделирование и эксперимент
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 937-944В статье представлены результаты численного моделирования и экспериментальные данные по высокоскоростному внедрению ударника в преграду. В расчетах использовалась дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных взаимосвязанных частиц. Данный класс моделей находит все более широкое применение в задачах высокоскоростного взаимодействия тел. В предыдущих работах авторов рассмотрены вопросы применения дискретно-элементной модели к задаче внедрения металлических шаров в массивные преграды. На основе сравнительного анализа данных вычислительных и физических экспериментов было показано, что для широкого класса задач высокоскоростного внедрения достаточно высокая точность дискретно-элементного моделирования может быть достигнута с использованием двухпараметрического потенциала Леннарда–Джонса. При этом была идентифицирована зависимость энергии межэлементной связи от динамической твердости материалов. Использование построенной таким образом дискретно-элементной модели позволило достаточно точно описать наблюдаемые в экспериментах процессы внедрения ударника в массивную преграду в диапазоне скоростей взаимодействия 500–2500 м/c.
В настоящей работе проводится сравнение результатов дискретно-элементного моделирования с экспериментальными данными по пробитию высокопрочных преград различной толщины стальными ударниками. Использование технологий распараллеливания вычислений на графических процессорах в сочетании со средствами трехмерной визуализации и анимации результатов позволяет получить детальные пространственно-временные картины процесса внедрения и провести сопоставление полученных картин с экспериментальными данными.
Сравнительный анализ экспериментальных и расчетных данных показал достаточно высокую точность дискретно-элементного моделирования для широкого диапазона толщин преград: для тонких преград, пробиваемых с сохранением цельности деформируемого ударника, для преград средней толщины, пробиваемых с практически полной фрагментацией ударника на выходе из преграды, а также для непробиваемых насквозь преград.
Ключевые слова: высокоскоростной удар, дискретно-элементная модель, энергия связи, численное моделирование.Просмотров за год: 13. Цитирований: 4 (РИНЦ). -
Двумерное макроскопическое и микроскопическое моделирование процессов взаимодействия воды и пористых материалов
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 77-86Просмотров за год: 10.В различных областях науки, техники, защиты окружающей среды, в строительстве актуальными являются вопросы изучения процессов взаимодействия пористых материалов с веществами, находящимися в различных агрегатных состояниях. Особенно актуальными с точки зрения экологии и защиты окружающей среды являются исследования процессов взаимодействия пористых материалов с водой в жидкой и газообразной фазе. Поскольку в одном моле воды содержится 6.022140857 · 1023 молекул H2O, для описания свойств, например, водяного пара в поре в основном используются макроскопические подходы, рассматривающие водяной пар как сплошную среду в рамках аэродинамики. В данной работе построена и использовалась для моделирования макроскопическая двумерная диффузионная модель [Bitsadze, Kalinichenko, 1980] поведения водяного пара внутри изолированной поры. Наряду с макроскопической моделью в работе предложена микроскопическая модель поведения водяного пара внутри изолированной поры, построенная в рамках молекулярно-динамического подхода [Gould et al., 2005]. В данной модели на основе классической механики Ньютона описывается движение каждой молекулы воды, взаимодействующей как с другими молекулами воды, так и со стенками поры. Рассматривается эволюция системы «водяной пар – пора» с течением времени. В зависимости от внешних по отношению к поре условий система эволюционирует к различным состояниям равновесия, которые характеризуются различными значениями макроскопических характеристик, таких как температура, плотность, давление. Сравнение результатов молекулярно-динамического моделирования с результатами вычислений на основе макроскопической диффузионной модели и экспериментальными данными позволяет сделать вывод о необходимости сочетания макроскопического и микроскопического подхода для адекватного и более точного описания процессов взаимодействия водяного пара с пористыми материалами.
-
Алгоритмы сквозного счета для процессов разрушения
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.
Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.
Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.
Ключевые слова: разрушение, повреждаемость, упругость, вязкость, пластичность, термодинамика, определяющие соотношения, разупрочнение, сеточные методы, сквозной счет.Просмотров за год: 24. -
Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"