Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'упругость':
Найдено статей: 42
  1. Скалько Ю.И.
    Корректные условия на границе, разделяющей подобласти
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 347-356

    В работе изложена постановка и решение задачи о корректных условиях на границе, разделяющей подобласти, для гиперболических систем линейных уравнений. Алгоритм решения продемонстрирован на примере системы уравнений упругой динамики для двух пространственных переменных. Приведенный подход легко распространяется на системы линейных гиперболических уравнений первого порядка с произвольным числом пространственных переменных.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  2. От редакции
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 877-878
    Просмотров за год: 3.
  3. Федосова А.Н., Силаев Д.А.
    Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988

    Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.

    Просмотров за год: 4.
  4. Найштут Ю.С.
    Решение краевых задач теории тонких упругих оболочек методом Неймана
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1143-1153

    Изучаются возможности применения метода Неймана для решения краевых задач теории тонких упругих оболочек. Приводится вариационная формулировка задач статического расчета оболочек, позволяющая рассматривать проблемы в рамках пространств обобщенных функций. Доказывается сходимость процедуры Неймана для оболочек с отверстиями, когда граничный контур закреплен не полностью. Численная реализация метода Неймана обычно требует значительного времени для получения надежного результата. В статье предлагается способ, улучшающий скорость сходимости процесса, позволяющий применить параллельные вычисления и их контроль во время работы алгоритма.

    Просмотров за год: 3.
  5. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  6. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 719-720
    Просмотров за год: 1.
  7. От редакции
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 831-832
    Просмотров за год: 2.
  8. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 853-855
    Просмотров за год: 6.
  9. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 163-164
    Просмотров за год: 6.
  10. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
Страницы: следующая последняя »

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus