Текущий выпуск Номер 3, 2020 Том 12
Результаты поиска по 'графические процессоры':
Найдено статей: 10
  1. Ризниченко Г.Ю.
    Графические процессоры - биологии
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 161
    Просмотров за год: 1.
  2. Кузьмин И.М., Тонков Л.Е., Копысов С.П.
    Алгоритмическое и программное обеспечение решения задач взаимодействия конструкции с жидкостью/газом на гибридных вычислительных системах
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 153-164

    Рассматривается создание прикладного программного интерфейса с выделением самостоятельного приложения для синхронизации и обмена данными, в котором реализуются отдельные подзадачи связывания для решения сопряженных задач взаимодействия конструкции с жидкостью или газом. Обсуждаются алгоритмы связывания подзадач и деформирования расчетных сеток. На численных примерах показывается возможность решения ряда задач на кластерах с графическими процессорами.

    Просмотров за год: 1. Цитирований: 11 (РИНЦ).
  3. Джораев А.Р.
    Гибридные вычислительные системы на основе GPU для задач биоинформатики
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 163-167

    Статья посвящена преимуществам применения гибридных вычислительных систем на основе графических процессоров NVIDIA для решения задач моделирования молекулярной динамики, квантовой химии, секвенирования, приведены примеры приложений.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  4. Казённов А.М.
    Основы технологии CUDA
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 295-308

    Рассказывается об истории развития технологии CUDA, о принципиальных её ограничениях. Статья предназначена для читателей, не знакомых с особенностями программирования графических процессоров, но желающих оценитьв озможности их использования для решения прикладных задач.

    Просмотров за год: 5. Цитирований: 4 (РИНЦ).
  5. Абгарян К.К., Журавлев А.А., Загордан Н.Л., Ревизников Д.Л.
    Дискретно-элементное моделирование внедрения шара в массивную преграду
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 71-79

    Дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных частиц, применена к задаче внедрения металлических шаров в массивные преграды. Для описания взаимодействия между частицами использовался двухпараметрический потенциал Леннарда–Джонса. Компьютерная реализация модели осуществлена с использованием распараллеливания вычислений на графических процессорах, что позволило добиться высокого пространственно-временного разрешения. На основе сравнения результатов компьютерного моделирования с экспериментальными данными идентифицирована зависимость энергии межчастичной связи от динамической твердости материалов. Показано, что использование данного подхода позволяет достаточно точно описать процесс внедрения ударника в преграду в диапазоне скоростей взаимодействия 500–2500 м/c.

    Просмотров за год: 5. Цитирований: 5 (РИНЦ).
  6. Устинин Д.М., Коваленко И.Б., Ризниченко Г.Ю., Рубин А.Б.
    Сопряжение различных методов компьютерного моделирования в комплексной модели фотосинтетической мембраны
    Компьютерные исследования и моделирование, 2013, т. 5, № 1, с. 65-81

    Необходимость корректного учета деталей пространственной и функциональной организации клеточных структур требует поиска новых подходов к моделированию субклеточных процессов, в том числе первичных процессов фотосинтеза в тилакоидной мембране. Эти подходы должны интегрировать физические и биологические представления о конкретных механизмах, которые объединяются в общую картину на уровне компьютерной модели. В работе предлагается новый подход к моделированию, в котором воспроизводится трехмерная пространственная структура фотосинтетической мембраны. Разные стадии переноса зарядов при фотосинтезе моделируются с использованием разного математического аппарата и объединяются в единую компьютерную модель. Разработанные алгоритмы реализованы в виде программного комплекса, использующего параллельные вычисления на высокопроизводительных кластерах и графических процессорах.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  7. Абгарян К.К., Елисеев С.В., Журавлев А.А., Ревизников Д.Л.
    Высокоскоростное внедрение. Дискретно-элементное моделирование и эксперимент
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 937-944

    В статье представлены результаты численного моделирования и экспериментальные данные по высокоскоростному внедрению ударника в преграду. В расчетах использовалась дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных взаимосвязанных частиц. Данный класс моделей находит все более широкое применение в задачах высокоскоростного взаимодействия тел. В предыдущих работах авторов рассмотрены вопросы применения дискретно-элементной модели к задаче внедрения металлических шаров в массивные преграды. На основе сравнительного анализа данных вычислительных и физических экспериментов было показано, что для широкого класса задач высокоскоростного внедрения достаточно высокая точность дискретно-элементного моделирования может быть достигнута с использованием двухпараметрического потенциала Леннарда–Джонса. При этом была идентифицирована зависимость энергии межэлементной связи от динамической твердости материалов. Использование построенной таким образом дискретно-элементной модели позволило достаточно точно описать наблюдаемые в экспериментах процессы внедрения ударника в массивную преграду в диапазоне скоростей взаимодействия 500–2500 м/c.

    В настоящей работе проводится сравнение результатов дискретно-элементного моделирования с экспериментальными данными по пробитию высокопрочных преград различной толщины стальными ударниками. Использование технологий распараллеливания вычислений на графических процессорах в сочетании со средствами трехмерной визуализации и анимации результатов позволяет получить детальные пространственно-временные картины процесса внедрения и провести сопоставление полученных картин с экспериментальными данными.

    Сравнительный анализ экспериментальных и расчетных данных показал достаточно высокую точность дискретно-элементного моделирования для широкого диапазона толщин преград: для тонких преград, пробиваемых с сохранением цельности деформируемого ударника, для преград средней толщины, пробиваемых с практически полной фрагментацией ударника на выходе из преграды, а также для непробиваемых насквозь преград.

    Просмотров за год: 13. Цитирований: 4 (РИНЦ).
  8. Жмуров А.А., Барсегов В.А., Трифонов С.В., Холодов Я.А., Холодов А.С.
    Эффективные генераторы псевдослучайных чисел при молекулярном моделировании на видеокартах
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 287-308

    Динамика Ланжевена, метод Монте-Карло и моделирование молекулярной динамики в неявном растворителе требуют больших массивов случайных чисел на каждом шаге расчета. Мы исследовали два подхода в реализации генераторов на графических процессорах. Первый реализует последовательный алгоритм генератора на каждом потоке в отдельности. Второй основан на возможности взаимодействия между потоками и реализует общий алгоритм на всех потоках в целом. Мы покажем использование этих подходов на примере алгоритмов Ran 2, Hybrid Taus и Lagged Fibonacci. Для проверки случайности полученных чисел мы использовали разработанные генераторы при моделировании динамики Ланжевена N независимых гармонических осцилляторов в термостате. Это позволило нам оценить статистические характеристики генераторов. Мы также исследовали производительность, использование памяти и ускорение, получаемое при переносе алгоритма с центрального на графический процессор.

    Просмотров за год: 11. Цитирований: 2 (РИНЦ).
  9. Жмуров А.А., Алексеенко А.Е., Барсегов В.А., Кононова О.Г., Холодов Я.А.
    Фазовый переход от α-спиралей к β-листам в суперспиралях фибриллярных белков
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 705-725

    Изучен переход от α-структур к β-структурам под воздействием внешнего механического поля в молекуле фибрина, содержащей суперспирали, и разрешен ландшафт энергии. Проведено детальное теоретическое моделирование отдельных этапов процесса растяжения суперспирального фрагмента. На графиках зависимости силы (F) от растяжения молекулы (X) для тандема из двух симметричных суперспиралей фибрина (длина каждой ∼17 нм) видны три режима механического поведения: (1) линейный (упругий) режим, в котором суперспирали ведут себя как энтропийная пружина (F<100−125 пН и X<7−8 нм), (2) вязкий (пластичный) режим, в котором сила сопротивления молекулы не меняется с увеличением растяжения (F≈150 пН и X≈10−35 нм) и (3) нелинейный режим зависимости F от X (F>175−200 пН и X>40−50 нм). В линейном режиме суперспирали раскручиваются на угол в 2π радиан, но структурные изменения на уровне вторичной структуры не происходят. Вязкий режим сопровождается фазовым переходом от тройных α-спиралей к параллельным β-листам, в результате которого изменяется вторичная структура. Критическое растяжение α-спиралей составляет 0.25 нм на один виток, а характерное изменение энергии — 4.9 ккал/моль. Также были подсчитаны связанные с фазовым переходом изменения во внутренней энергии Δu, энтропии Δs и механической емкости cf из расчета на один виток α-спирали. Подобное динамическое поведение α-спиралей при растяжении белковых филаментов может являться универсальным механизмом регуляции фибриллярных α-спиральных белков в ответ на внешнее силовое воздействие, возникающее в результате действия биологических сил.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  10. Минкин А.С., Книжник А.А., Потапкин Б.В.
    Реализация алгоритмов межатомного взаимодействия с использованием технологии OpenCL
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 549-558

    Моделирование углеродных наноструктур методом классической молекулярной динамики требует больших объемов вычислений. Один из способов повышения производительности соответствующих алгоритмов состоит в их адаптации для работы с SIMD-подобными архитектурами, в частности, с графическими процессорами. В данной работе рассмотрены особенности алгоритмов вычисления многочастичного взаимодействия на основе классических потенциалов Терсоффа и погруженного атома с использованием технологии OpenCL. Стандарт OpenCL позволяет обеспечить универсальность и переносимость алгоритмов и может быть эффективно использован для гетерогенных вычислений. В данной работе сделана оценка производительности OpenCL алгоритмов вычисления межатомного взаимодействия для систем на базе центральных и графических процессоров. Показано, что использование атомарных операций эффективно для вычисления потенциала Терсоффа и неэффективно в случае потенциала погруженного атома. Оценка производительности показывает значительное ускорение GPU реализации алгоритмов вычисления потенциалов межатомного взаимодействия по сравнению с соответствующими однопоточными алгоритмами.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus