Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'гидродинамика':
Найдено статей: 47
  1. Платонов Д.В., Минаков А.В., Дектерев А.А., Сентябов А.В.
    Численное моделирование пространственных течений с закруткой потока
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 635-648

    Данная работа посвящена исследованию закрученных течений. Течения с закруткой потока находят широкое применение в различных технологических процессах. Закрученные течения могут сопровождаться такими нестационарными эффектами, как прецессия вихревого ядра. В свою очередь крупномасштабные пульсации, вызванные прецессией вихря, могут привести к повреждению конструкций и снижению надежности оборудования. Таким образом, для инженерных расчетов требуются подходы, достаточно хорошо описывающие подобные течения. В данной работе представлена методика описания закрученных потоков апробированная в рамках программных комплексов Fluent и SigmaFlow. Проведено численное моделирование нескольких тестовых задач с закруткой потока. Полученные результаты сопоставлены между собой, а также с экспериментальными данными.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  2. Ильин О.В.
    Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882

    Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.

  3. Аксёнов А.А., Похилко В.И., Моряк А.П.
    Использование приповерхностных сеток для численного моделирования вязкостных явлений в задачах гидродинамики судна
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 995-1008

    Численное моделирование обтекания судового корпуса, работы гребного винта, а также решение других задач гидродинамики судна в адаптивных локально-измельченных сетках на основе прямоугольных начальных сеток обладают рядом преимуществ в области подготовки расчетов и являются весьма удобными для проведения экспресс-анализа. Однако при необходимости существенного уточнения моделирования вязкостных явлений возникает ряд сложностей, связанных с резким ростом числа неизвестных при адаптации расчетной сетки до высоких уровней, которая необходима для разрешения пограничных слоев, и снижением шага по времени в расчетах со свободной поверхностью из-за уменьшения пролетного времени проадаптированных ячеек. Для ухода от этих недостатков предлагается использовать для разрешения пограничных слоев дополнительные приповерхностные сетки, представляющие собой одномерные адаптации ближайших к стенке слоев расчетных ячеек основной сетки. Приповерхностные сетки являются дополнительными (или химерными), их объем не вычитается из объема основной сетки. Уравнения движения жидкости интегрируются в обеих сетках одновременно, а стыковка решений происходит по специальному алгоритму. В задаче моделирования обтекания судового корпуса приповерхностные сетки могут обеспечивать нормальное функционирование низкорейнольдсовых моделей турбулентности, что существенно уточняет характеристики потока в пограничном слое у гладких поверхностей при их безотрывном обтекании. При наличии на поверхности корпуса отрывов потока или других сложных явлений можно делить поверхность корпуса на участки и использовать приповерхностные сетки только на участках с простым обтеканием, что тем не менее обеспечивает большую экономию ресурсов. В задаче моделирования работы гребного винта приповерхностные сетки могут обеспечивать отказ от пристеночных функций на поверхности лопастей, что ведет к значительному уточнению получаемых на них гидродинамических сил. Путем изменения числа и конфигурации слоев приповерхностных ячеек можно варьировать разрешение в пограничном слое без изменения основной сетки, что делает приповерхностные сетки удобным инструментом исследования масштабных эффектов в рассмотренных задачах.

  4. Кривовичев Г.В.
    Разностные схемы расщепления для системы одномерных уравнений гемодинамики
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 459-488

    Работа посвящена построению и анализу разностных схем для системы уравнений гемодинамики, полученной осреднением уравнений гидродинамики вязкой несжимаемой жидкости по поперечному сечению сосуда. Рассматриваются модели крови как идеальной и как вязкой ньютоновской жидкости. Предложены разностные схемы, аппроксимирующие уравнения со вторым порядком по пространственной переменной. Алгоритмы расчета по построенным схемам основаны на методе расщепления по физическим процессам, в рамках которого на одном шаге по времени уравнения модели рассматриваются раздельно и последовательно. Практическая реали- зация предложенных схем приводит к последовательному решению на каждом шаге по времени двух линейных систем с трехдиагональными матрицами. Показано, что схемы являются $\rho$-устойчивыми при незначительных ограничениях на шаг по времени в случае достаточно гладких решений.

    При решении задачи с известным аналитическим решением показано, что имеет место сходимость численного решения со вторым порядком по пространственной переменной в широком диапазоне значений шага сетки. При проведении вычислительных экспериментов по моделированию течения крови в модельных сосудистых системах производилось сравнение предложенных схем с такими известными явными схемами, как схема Лакса – Вендроффа, Лакса – Фридрихса и МакКормака. При решении задач показано, что результаты, полученные с помощью предложенных схем, близки к результатам расчетов, полученных по другим вычислительными схемам, в том числе построенным на основе других методов дискретизации. Показано, что в случае разных пространственных сеток время расчетов для предложенных схем значительно меньше, чем в случае явных схем, несмотря на необходимость решения на каждом шаге систем линейных уравнений. Недостатками схем является ограничение на шаг по времени в случае разрывных или сильно меняющихся решений и необходимость использования экстраполяции значений в граничных точках сосудов. В связи с этим актуальными для дальнейших исследований являются вопросы об адаптации схем расщепления к решению задач с разрывными решениями и в случаях специальных типов условий на концах сосудов.

  5. Жаркова В.В., Щеляев А.Е., Фишер Ю.В.
    Численное моделирование внешнего обтекания спортсмена
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 331-344

    В работе описывается численное моделирование процесса внешнего обтекания подвижного спортсмена с целью определения его интегральных характеристик при различных режимах набегающего потока и режимах его движения. Численное моделирование выполнено с помощью программного комплекса вычислительной гидродинамики FlowVision, построенного на решении набора уравнений, описывающих движение жидкости и/или газа в расчетной области, в том числе уравнений сохранения массы, импульса и энергии, уравнений состояния, уравнений моделей турбулентности. Также учитываются подвижные границы расчетной области, изменяющаяся геометрическая форма которых моделирует фазы движения спортсмена, при прохождении трассы. Решение системы уравнений выполняется на декартовой сетке с локальной адаптацией в области высоких градиентов давлений или сложной геометрической формы границы расчетной области. Решение уравнений выполняется с помощью метода конечных объемов, с использованием расщепления по физическим процессам. Разработанная методика была апробирована на примере спортсменов, совершающих прыжки на лыжах с трамплина, в рамках подготовки к Олимпиаде в Сочи в 2014 году. Сравнение результатов численного и натурного эксперимента показало хорошую корреляцию. Технология моделирования состоит из следующих этапов:

    1) разработка постановки задачи внешнего обтекания спортсмена в обращенной постановке, где неподвижный объект исследования обтекается набегающим потоком, со скоростью, равной скорости движения объекта;

    2) разработка технологии изменения геометрической формы границы расчетной области в зависимости от фазы движения спортсмена; разработка методики численного моделирования, включающей в себя определение дискретизации по времени и пространству за счет выбора шага интегрирования и измельчения объемной расчетной сетки;

    3) проведение серии расчетов с использованием геометрических и динамических данных спортсмена из сборной команды.

    Описанная методика универсальна и применима для любых других видов спорта, биомеханических, природных и подобных им технических объектов.

    Просмотров за год: 29.
  6. Аксёнов А.А., Жлуктов С.В., Похилко В.И., Сорокин К.Э.
    Неявный алгоритм решения уравнений движения несжимаемой жидкости
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023

    Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.

    В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.

    В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.

  7. Аксёнов А.А., Жлуктов С.В., Калугина М.Д., Каширин В.С., Лобанов А.И., Шаурман Д.В.
    Редуцированная математическая модель свертывания крови с учетом переключения активности тромбина как основа оценки влияния гемодинамических эффектов и ее реализация в пакете FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1039-1067

    Рассматривается возможность численного 3D-моделирования образования тромбов.

    Известные детальные математические модели формирования тромбов включают в себя большое число уравнений. Для совмещения таких подробных математических моделей с гидродинамическими кодами для моделирования роста тромбов в кровотоке необходимы значительные вычислительные ресурсы. Разумной альтернативой представляется использование редуцированных математических моделей. В настоящей работе описаны две математические модели, основанные на редуцированной математической модели производства тромбина.

    Первая модель описывает рост тромбоцитарного тромба в крупном сосуде (артерии). Течения в артериях существенно нестационарные, для артерий характерны пульсовые волны. Скорость течения крови в них велика по сравнению с венозным деревом. Редуцированная модель производства тромбина и тромбообразования в артериях относительно проста. Показано, что процессы производства тромбина хорошо описываются приближением нулевого порядка.

    Для вен характерны более низкие скорости, меньшие градиенты и, как следствие, меньшие значения напряжений сдвига. Для моделирования производства тромбина в венах необходимо решать более сложную систему уравнений, учитывающую все нелинейные слагаемые в правых частях.

    Моделирование проводится в индустриальном программном комплексе (ПК) FlowVision.

    Проведенные тестовые расчеты показали адекватность редуцированных моделей производства тромбина и тромбообразования. В частности, расчеты демонстрируют формирование зоны возвратного течения за тромбом. За счет формирования такой зоны происходит медленный рост тромба в направлении вниз по потоку. В наветренной части тромба концентрация активных тромбоцитов мала, соответственно, рост тромба в направлении вверх по потоку незначителен.

    При учете изменения течения в процессе сердечного цикла рост тромба происходит гораздо медленнее, чем при задании осредненных (по сердечному циклу) условий. Тромбин и активированные тромбоциты, наработанные во время диастолы, быстро уносятся потоком крови во время систолы. Заметный эффект оказывает учет неньютоновской реологии крови.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.