Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'газовая динамика':
Найдено статей: 40
  1. Бабаков А.В., Чечёткин В.М.
    Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643

    Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.

    Просмотров за год: 27.
  2. Долгов Е.В., Колосов Н.С., Фирсов А.А.
    Исследование влияния искрового разряда на смешение струи газообразного топлива со сверхзвуковым воздушным потоком
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 849-860

    В работе представлены результаты численного моделирования влияния протяженного искрового разряда на динамику перемешивания инжектируемой газовой струи со сверхзвуковым воздушным потоком. Расчеты проводились в программном комплексе FlowVision. Подача топлива осуществляется при помощи инжектора, расположенного на стенке канала, а разряд организован вблизи стенки ниже по потоку относительно инжектора. Моделирование электрического искрового разряда выполнено при помощи объемного источника тепла. С целью описания принципиального вида плазменного актуатора для ускорения перемешивания в сверхзвуковом потоке (число Маха М = 2) в ходе исследования выполнено варьирование энерговклада в разряд в диапазоне 100–500 мДж на один импульс, а также определено влияние формы и местоположения разряда относительно топливного инжектора. Проведено исследование режимов инжекции топлива в сверхзвуковой воздушный поток и найден оптимальный режим истечения струи газа для исследования влияния искрового разряда на смешение. Разработан метод анализа картины возмущений границы раздела «топливо–окислитель», вызванных работой импульсного искрового разряда. Подготовлена программа в среде LabView для получения количественной характеристики для дальнейшего сравнения полученных результатов с экспериментальными данными.

    Результаты моделирования позволяют сделать вывод, что протяженный искровой разряд, расположенный ниже по потоку относительно инжектора и расположенный вдоль потока, обеспечивает максимальное увеличение границы раздела между струей топлива и основным потоком. Типичная частота повторения импульсов разряда в импульсно-периодическом режиме должна составлять более 6 кГц при длине разряда ~10 мм, чтобы обеспечить постоянное влияние на смешение в потоке со скоростью 500 м/с.

  3. Максимов Ф.А., Нигматуллин В.О.
    Метод гибридных сеток в задачах внешней и внутренней газовой динамики
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 543-565

    На основе метода моделирования задач газовой динамики с помощью системы сеток реализован алгоритм для решения нестационарной задачи с движущими телами. Алгоритм учитывает перемещение и вращение тел по заданному закону движения. Алгоритм применен для исследования обтекания бесконечной решетки, составленной из цилиндров с эллиптическим сечением, которые либо перемещаются поперек потока, либо вращаются с изменением угла атаки. Для моделирования обтекания тел с острой кромкой, характерных для профилей турбомашин, реализован алгоритм построения сетки типа С с включением некоторой области за профилем. Программа моделирования течения около профиля реализована в рамках моделей уравнений Эйлера, уравнений Навье – Стокса в приближении тонкого слоя с ламинарной вязкостью и турбулентной вязкостью в рамках алгебраической модели вязкости. Также программа была адаптирована для решения задач внутренней газодинамики турбомашин. Для этого была изменена методика задания граничных условий на входе и выходе из расчетной области со скорости на перепад давления, а также на боковых границах со свободного потока на периодичность. Это позволило моделировать течение газа в межлопаточных каналах компрессоров и турбин газотурбинных двигателей. Для отработки алгоритма были проведены серии расчетов аэродинамических параметров нескольких турбинных решеток на различных дозвуковых и сверхзвуковых режимах и их сравнение с экспериментом. Расчеты параметров турбинных решеток были проведены в рамках модели невязкого и вязкого газа. Сравнение расчета и эксперимента проводилось по распределению параметров газа около профиля, а также по потерям энергии потока в решетке. Расчеты показали применимость и корректность работы программы для решения данного класса задач. Для тестирования программы на задачах внешней дозвуковой аэродинамики были выполнены расчеты аэродинамических характеристик изолированного аэродинамического профиля в невозмущенном потоке. Полученные результаты позволяют утверждать о применимости метода гибридных сеток к различным классам задач прикладной газовой динамики.

  4. Пескова Е.Е., Снытников В.Н., Жалнин Р.В.
    Вычислительный алгоритм для изучения внутренних ламинарных потоков многокомпонентного газа с разномасштабными химическими процессами
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1169-1187

    Разработан вычислительный алгоритм для изучения химических процессов во внутренних течениях многокомпонентного газа при воздействии лазерного излучения. Математическая модель представляет собой уравнения газовой динамики с химическими реакциями при малых числах Маха с учетом диссипативных членов, которые описывают динамику вязкой теплопроводной среды с диффузией, химическими реакциями и подводом энергии посредством лазерного излучения. Для данной математической модели характерно наличие нескольких сильно различающихся между собой временных и пространственных масштабов. Вычислительный алгоритм построен на основе схемы расщепления по физическим процессам. Каждый шаг интегрирования по времени разбивается на следующие блоки: решение уравнений химической кинетики, решение уравнения для интенсивности излучения, решение уравнений конвекции – диффузии, расчет динамической составляющей давления и расчет коррекции вектора скорости. Решение жесткой системы уравнений химической кинетики проводится с помощью специализированной явной схемы второго порядка точности или подключаемым модулем RADAU5. Для нахождения конвективных членов в уравнениях применяются численные потоки Русанова и WENO-схема повышенного порядка аппроксимации. На основе полученного алгоритма разработан код с использованием технологии параллельных вычислений MPI. Созданный код использован для расчетов пиролиза этана с радикальными реакциями. Детально изучается формирование сверхравновесных концентраций радикалов по объему реактора. Проведено численное моделирование течения реакционного газа в плоской трубе с подводом лазерного излучения, востребованное для интерпретации экспериментальных результатов. Показано, что лазерное излучение увеличивает в разы конверсию этана и выходы целевых продуктов на коротких длинах ближе к входу в реакционную зону. Сокращение эффективной длины реакционной зоны позволяет предложить новые решения при проектировании реакторов конверсии этана в ценные углеводороды. Разработанные алгоритм и программа найдут свое применение в создании новых технологий лазерной термохимии.

  5. Ситников С.С., Черемисин Ф.Г.
    Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123

    В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.

  6. Геллер О.В., Васильев М.О., Холодов Я.А.
    Построение высокопроизводительного вычислительного комплекса для моделирования задач газовой динамики
    Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 309-317

    Целью исследований является разработка программного комплекса для решения задач газовой динамики в многосвязных областях правильной геометрии на высокопроизводительной вычислительной системе. Сравниваются различные технологии реализации параллельных вычислений. Программный комплекс реализован на многопоточных параллельных системах, использующих для организации расчета как многоядерную архитектуру, так и массивно-параллельную. Проведено сравнение численных результатов на основе программного комплекса с известными решениями модельных задач. Проведено исследование производительности различных вычислительных платформ.

    Просмотров за год: 5. Цитирований: 6 (РИНЦ).
  7. Представлена физико-математическая постановка сопряженной геометрической и газодинамической задачи моделирования внутрикамерных процессов и расчета основных внутрибаллистических характеристик ракетных двигателей на твердом топливе в осесимметричном приближении. Изложены основополагающие методики и численный алгоритм решения задачи. Отслеживание горящей поверхности топлива осуществлено неявным образом с помощью метода уровней на декартовой структурированной вычислительной сетке. Для расчета параметров течения использованы двумерные уравнения газовой динамики. Ввиду несогласованности границ области с узлами вычислительной сетки, в численных расчетах учтено наличие фиктивных точек, лежащих вне рассматриваемой области, но рядом с границей. Для задания значений параметров течения в фиктивных точках применена обратная процедура Лакса – Вендроффа, заключающаяся в построении экстраполяционного полинома, который учитывает как текущее распределение параметров, так и условия на границе. Численное решение полученной системы уравнений основано на использовании WENO-схем пятого и третьего порядка для дискретной аппроксимации по пространственной координате уравнений метода уровней и газовой динамики соответственно и применении методов Рунге – Кутты, обладающих свойством уменьшения полной вариации, для решения полученных полудискретных уравнений. Изложенный численный алгоритм распараллелен с использованием технологии CUDA и в дальнейшем оптимизирован с учетом особенностей архитектуры графических процессоров.

    Программный комплекс использован при расчетах внутрибаллистических характеристик бессоплового двигателя на твердом топливе в течение основного времени работы. На основе полученных численных результатов обсуждается эффективность распараллеливания с использованием технологии CUDA и применения рассмотренных оптимизаций. Показано, что применяемая методика распараллеливания приводит к значительному ускорению по сравнению с использованием центральных процессоров. Представлены распределения основных параметров течения продуктов сгорания в различные промежутки времени. Произведено сравнение полученных результатов квазиодномерного подхода и разработанной численной методики.

  8. Русяк И.Г., Тененев В.А., Суфиянов В.Г., Клюкин Д.А.
    Моделирование неравномерного горения и напряженно-деформированного состояния пороховых элементов трубчатого заряда при выстреле
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1281-1300

    Врабо те представлена физико-математическая постановка задач внутренней баллистики артиллерийского выстрела для заряда, состоящего из совокупности пороховых трубок, и их напряженно-деформированного состояния. Горение и движение пучка пороховых трубок по каналу ствола моделируются эквивалентным трубчатым зарядом всестороннего горения. Предполагается, что эквивалентная трубка движется по оси канала ствола. Скорость движения эквивалентного трубчатого заряда и его текущее положение определяются из второго закона Ньютона. При расчете параметров течения использованы двумерные осесимметричные уравнения газовой динамики, для решения которых строится осесимметричная ортогонализированная разностная сетка, адаптирующаяся к условиям течения. Для численного решения системы газодинамических уравнений применяется метод контрольного объема. Параметры газа на границах контрольных объемов определяются с использованием автомодельного решения задачи о распаде произвольного разрыва С. К. Годунова. Напряженно-деформированное состояние моделируется для отдельной горящей пороховой трубки, находящейся в поле нестационарных газодинамических параметров. Расчет газодинамических параметров выстрела осуществляется без учета деформированного состояния пороховых элементов. При данных условиях рассмотрено поведение пороховых элементов при выстреле. Для решения нестационарной задачи упругости используется метод конечных элементов с разбиением области расчета на треугольные элементы. В процессе выгорания пороховой трубки расчетная сетка на каждом временном слое динамической задачи полностью обновляется в связи с изменением границ порохового элемента за счет горения. Представлены временные зависимости параметров внутрибаллистического процесса и напряженно-деформированного состояния пороховых элементов, а также распределения основных параметров течения продуктов горения в различные моменты времени. Установлено, что трубчатые пороховые элементы в процессе выстрела испытывают существенные деформации, которые необходимо учитывать при решении основной задачи внутренней баллистики. Полученные данные дают представления об уровне эквивалентных напряжений, действующих в различных точках порохового элемента. Представленные результаты говорят об актуальности сопряженной постановки задачи газовой динамики и напряженно-деформированного состояния для зарядов, состоящих из трубчатых порохов, поскольку это позволяет по-новому подойти к проектированию трубчатых зарядов и открывает возможность определения параметров, от которых существенно зависят физика процесса горения пороха и, следовательно, динамика процесса выстрела.

  9. Русяк И.Г., Ермолаев М.А.
    К вопросу о решении сопряженной задачи газовой динамики, воспламенения и горения порохов в условиях артиллерийского выстрела
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 99-106

    Рассмотрен численный алгоритм решения задачи воспламенения и нестационарного горения порохов на равномерной расчетной сетке, а также на сетке со сгущением вблизи поверхности горения при постоянной и подстраивающейся под глубину прогретого слоя области расчета. Приведен анализ эффективности рассмотренных расчетных сеток.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  10. Губанов С.М., Дурновцев М.И., Картавых А.А., Крайнов А.Ю.
    Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529

    В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.