Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'газовая динамика':
Найдено статей: 40
  1. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 485-489
  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1037-1040
  3. В настоящее время для численного моделирования начально-краевых задач для систем гиперболических уравнений в частных производных (например, уравнения газовой динамики, МГД, деформируемого твердого тела и т. д.) применяются различные нелинейные численные схемы пространственной аппроксимации. Это связано с необходимостью повышения порядка аппроксимации и расчета разрывных решений, часто возникающих в таких системах. Необходимость в нелинейных схемах связана с ограничением, следующим из теоремы С. К. Годунова о невозможности построения линейной схемы порядка больше первого для монотонной аппроксимации уравнений такого типа. Одними из наиболее точных нелинейных схем являются схемы типа ENO (существенно не осциллирующие схемы и их модификации), в том числе схемы WENO (взвешенные, существенно не осциллирующие схемы). Последние получили наибольшее распространение, поскольку при одинаковой ширине шаблона имеют более высокий порядок аппроксимации чем ENO-схемы. Плюсом ENO- и WENO-схем является сохранение высокого порядка аппроксимации на немонотонных участках решения. Исследование данных схем затруднительно в связи с тем, что сами схемы нелинейны и применяются для аппроксимации нелинейных уравнений. В частности, условие линейной устойчивости ранее было получено только для схемы WENO5 (пятого порядка аппроксимации на гладких решениях) и является приближенным. В настоящей работе рассматриваются вопросы построения и устойчивости схем WENO5, WENO7, WENO9, WENO11 и WENO13 для конечно-объемной схемы для уравнения Хопфа. В первой части статьи рассмотрены методы WENO в общем случае и приведены явные выражения для коэффициентов полиномов и весов линейных комбинаций, необходимых для построения схем. Доказывается ряд утверждений, позволяющих сделать выводы о порядках аппроксимации в зависимости от локального вида решения. Проводится анализ устойчивости на основе принципа замороженных коэффициентов. Рассматриваются случаи гладкого и разрывного поведения решения в области линеаризации при замороженных коэффициентах на гранях конечного объема и анализируется спектр схем для этих случаев. Доказываются условия линейной устойчивости для различных методов Рунге–Кутты при применении со схемами WENO. В результате приводятся рекомендации по выбору максимально возможного параметра устойчивости, которое наименьшим образом влияет на нелинейные свойства схем. Следуя полученным ограничениям, делается вывод о сходимости схем.

    Просмотров за год: 9. Цитирований: 1 (РИНЦ).
  4. Холодов Я.А.
    Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814

    В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.

  5. Брагин М.Д., Рогов Б.В.
    Бикомпактные схемы для задач газовой динамики: обобщение на сложные расчетные области методом свободной границы
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 487-504

    Работа посвящена использованию бикомпактных схем для численного решения эволюционных уравнений гиперболического типа. Основным преимуществом схем этого класса является сочетание двух положительных свойств: пространственной аппроксимации высокого четного порядка на шаблоне, всегда занимающем одну ячейку сетки, и спектрального разрешения, лучшего по сравнению с классическими компактными конечно-разностными схемами того же порядка пространственной аппроксимации. Рассматривается одна особенность бикомпактных схем — жесткая привязка их пространственной аппроксимации к декартовым сеткам (с ячейками-параллелепипедами в трехмерном случае). Она делает затруднительным применение бикомпактных схем к решению задач в сложных расчетных областях в рамках подхода неструктурированных сеток. Предлагается решать эту проблему путем применения известных методов аппроксимации границ сложной формы и соответствующих им краевых условий на декартовых сетках. Обобщение бикомпактных схем на задачи в геометрически сложных областях проводится на примере задач газовой динамики и уравнений Эйлера. В качестве конкретного метода, позволяющего учесть на декартовых сетках влияние твердых границ произвольной формы на течение газа, выбирается метод свободной границы. Приводится краткое описание этого метода, выписываются его уравнения. Для них строятся бикомпактные схемы четвертого порядка аппроксимации по пространству с локально-одномерным расщеплением. Компенсационный поток метода свободной границы дискретизируется со вторым порядком точности. Для интегрирования по времени в получаемых схемах применяются неявный метод Эйлера и $L$-устойчивый жестко-точный трехстадийный однократно диагонально-неявный метод Рунге–Кутты третьего порядка точности. Разработанные бикомпактные схемы тестируются на трех двумерных задачах: о стационарном сверхзвуковом обтекании с числом Маха, равным трем, одного круглого цилиндра и группы изт рех круглых цилиндров, а также о нестационарном взаимодействии плоской ударной волны и круглого цилиндра в канале с плоскопараллельными стенками. Полученные результаты хорошо согласуются с результатами других работ: твердые тела физически корректно влияют на поток газа, давление в контрольных точках на поверхностях тел рассчитывается с точностью, в целом отвечающей выбранному разрешению сетки и уровню численной диссипации.

  6. Аристова Е.Н., Караваева Н.И.
    Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1429-1448

    Численное решение системы уравнений высокотемпературной радиационной газовой динамики (ВРГД) является вычислительно трудоемкой задачей, так как взаимодействие излучения с веществом нелинейно и нелокально. Коэффициенты поглощения излучения зависят от температуры, а поле температур определяется как газодинамическими процессами, так и переносом излучения. Обычно для решения системы ВРГД используется метод расщепления по физическим процессам, выделяется блок решения уравнения переноса совместно с уравнением баланса энергии вещества при известных давлениях и температурах. Построенные ранее разностные схемы, используемые для решения этого блока, обладают порядками сходимости не выше второго. Так как даже на современном уровне развития вычислительной техники имеются ограничения по памяти, то для решения сложных технических задач приходится применять не слишком подробные сетки. Это повышает требования к порядку аппроксимации разностных схем. В данной работе впервые реализованы бикомпактные схемы высокого порядка аппроксимации для алгоритма совместного решения уравнения переноса излучения и уравнения баланса энергии. Предложенный метод может быть применен для решения широкого круга практических задач, так как обладает высокой точностью и подходит для решения задач с разрывами коэффициентов. Нелинейность задачи и использование неявной схемы приводит к итерационному процессу, который может медленно сходиться. В данной работе используется мультипликативный HOLO-алгоритм — метод квазидиффузии В.Я. Гольдина. Ключевая идея HOLO-алгоритмов состоит в совместном решении уравнений высокого порядка (high order, HO) и низкого порядка (low order, LO). Уравнением высокого порядка (HO) является уравнение переноса излучения, которое решается в многогрупповом приближении, далее уравнение осредняется по угловой переменной и получается система уравнений квазидиффузии в многогрупповом приближении (LO1). Следующим этапом является осреднение по энергии, при этом получается эффективная одногрупповая система уравнений квазидиффузии (LO2), которая решается совместно с уравнением энергии. Решения, получаемые на каждом этапе HOLO-алгоритма, оказываются тесно связанными, что в итоге приводит к ускорению сходимости итерационного процесса. Для каждого из этапов HOLO-алгоритма предложены разностные схемы, построенные методом прямых в рамках одной ячейки и обладающие четвертым порядком аппроксимации по пространству и третьим порядком по времени. Схемы для уравнения переноса были разработаны Б.В. Роговым и его коллегами, схемы для уравнений LO1 и LO2 разработаны авторами. Предложен аналитический тест, на котором демонстрируются заявленные порядки сходимости. Рассматриваются различные варианты постановки граничных условий и исследовано их влияние на порядок сходимости по времени и пространству.

  7. Жаркова В.В., Щеляев А.Е., Дядькин А.А., Павлов А.О., Симакова Т.В.
    Расчет гидродинамических воздействий на возвращаемый аппарат при посадке на воду
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 37-46

    В работе представлены результаты моделирования расчетных случаев приводнения возвращаемого аппарата (ВА) пилотируемого транспортного корабля нового поколения в условиях штиля. Рассмотрены случаи посадки ВА с работающими и с выключенными двигательными установками.

    Задача приводнения ВА моделировалась в рамках двухфазной постановки с наличием двух несмешивающихся фаз: воды и газа, состоящего из воздуха и продуктов сгорания, поступающих из двигательной установки. Параметры течения в каждой фазе резко отличаются друг от друга по величине плотности и скорости распространения звука. Истечение продуктов сгорания из сопловых установок характеризуется высокими скоростями и давлениями, что усложняет задачу, по сравнению со свободным падением ВА в воду. В расчетах используется упрощение постановки задачи, в котором при взаимодействии горячих струй с водой кипение, испарение и образование водяного пара не учитываются. Газовые струи только нагревают и вытесняют воду.

    Для моделирования переноса межфазных границ применяется метод VOF (Volume of fluid), где перенос контактной поверхности описывается конвективным уравнением, а поверхностное натяжение на межфазной границе учитывается давлением Лапласа. Ключевой особенностью метода является расщепление поверхностных ячеек, куда заносятся данные соответствующей фазы. Уравнения для обеих фаз (уравнения неразрывности, импульса, энергии и другие) в поверхностных ячейках решаются совместно.

    Моделирование приводнения ВА занимает длительное время, что связанно с особенностями явного расчета уровня границы раздела фаз (свободной поверхности). Для получения качественных результатов свободная поверхность должна быть разрешена большим количеством расчетных ячеек, но при этом за один шаг интегрирования перемещаться не более чем на одну ячейку.

    В процессе приземления исследовались гидродинамическое воздействие на ВА, динамика его движения и остойчивость ВА после приводнения, оценивались продольные перегрузки. Полученные данные использовались для анализа нагружения и прочности конструкции корпуса ВА, а также его отдельных элементов.

    Просмотров за год: 30.
  8. Шепелев В.В., Фортова С.В., Опарина Е.И.
    Использование программного комплекса Turbulence Problem Solver (TPS) для численного моделирования взаимодействия лазерного излучения с металлами
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 619-630

    Работа посвящена использованию программного пакета Turbulence Problem Solver (TPS) для численного моделирования широкого спектра лазерных задач. Возможности пакета продемонстрированы на примере численного моделирования взаимодействия фемтосекундных лазерных импульсов с металлическими пленками. Разработанный авторами программный пакет TPS предназначен для численного решения гиперболических систем дифференциальных уравнений на многопроцессорных вычислительных системах с распределенной памятью. Пакет представляет собой современный и расширяемый программный продукт. Архитектура пакета дает исследователю возможность моделировать различные физические процессы единообразно, с помощью различных численных методик и программных блоков, содержащих специфические для каждой задачи начальные условия, граничные условия и источниковые компоненты. Пакет предоставляет пользователю возможность самостоятельно расширять функциональность пакета, добавляя новые классы задач, вычислительных методов, начальных и граничных условий, а также уравнений состояния вещества. Реализованные в программном пакете численные методики тестировались на тестовых задачах в одномерной, двумерной и трехмерной геометрии, в состав которых вошли задачи Римана о распаде произвольного разрыва с различными конфигурациями точного решения.

    Тонкие пленки на подложках — важный класс мишеней для наномодификации поверхностей в плазмонике или сенсорных приложениях. Этой тематике посвящено множество статей. Большинство из них, однако, концентрируются на динамике самой пленки, уделяя мало внимания подложке и рассматри- вая ее просто как объект, поглощающий первую волну сжатия и не влияющий на возникающие вследствие облучения поверхностные структуры. В работе подробно описан вычислительный эксперимент по численному моделированию взаимодействия единичного ультракороткого лазерного импульса с золотой пленкой, напыленной на толстую стеклянную подложку. Использовалась равномерная прямоугольная сетка и численный метод Годунова первого порядка точности. Представленные результаты расчетов позволили подтвердить теорию об ударно-волновом механизме образования отверстий в металле при фемтосекундной лазерной абляции для случая тонкой золотой пленки толщиной около 50 нм на толстой стеклянной подложке.

    Просмотров за год: 15.
  9. Схемы WENO (взвешенные, существенно не осциллирующие схемы) в настоящее время имеют достаточно обширную область применения для аппроксимации разрывных решений в уравнениях в частных производных. Данные схемы применялись для прямого численного моделирования и моделирования динамики больших вихрей в задачах газовой динамики, задачах МГД и даже для задач нейтронной кинетики. Данная работа посвящена уточнению некоторых характеристик схем WENO и численному моделированию характерных задач, которые позволяют сделать выводы обоб ласти применимости данных схем. Первая часть работы содержала результаты по доказательству свойств аппроксимации, устойчивости и сходимости схем WENO5, WENO7, WENO9, WENO11 и WENO13. Во второй части работы проводится модифицированный волновой анализ, позволяющий сделать вывод о дисперсионных и диссипативных свойствах схем. Далее, проводится численное моделирование ряда характерных задач для уравнений гиперболического типа: уравнений переноса (одномерное и двухмерное), уравнения Хопфа, уравнения Бюргерса (с малой диссипацией) и уравнения динамики невязкого газа (одномерное и двухмерное). Для каждой из задач, подразумевающих гладкое решение, приведено практическое вычисление порядка аппроксимации с помощью метода Рунге. Во всех задачах проверяются выводы, сделанные в первой части работы по влиянию шага по времени на нелинейные свойства схем. В частности, для уравнений переноса разрывной функции и уравнений Хопфа показано, что невыполнение указанных рекомендаций ведет вначале к росту вариации решения, а затем включается диссипативный нелинейный механизм схемы и аппроксимация падает. Практически подтверждены выводы первой части по условиям устойчивости. Для одномерного уравнения Бюргерса проведено моделирование затухания случайно распределенных начальных условий в периодической области и выполнено сопоставление со спектральным методом. Делается вывод о применимости схем WENO7–WENO13 для прямого численного моделирования турбулентности. В конце демонстрируются возможности схем на начально-краевых задачах для уравнений динамики невязкого газа: неустойчивость Рэлея–Тейлора и отражение ударной волны от клина с образованием сложной конфигурации ударных волн и разрывов.

    Просмотров за год: 13.
  10. Волохова А.В., Земляная Е.В., Качалов В.В., Сокотущенко В.Н., Рихвицкий В.С.
    Численное исследование фильтрации газоконденсатной смеси в пористой среде
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 209-219

    В последние десятилетия важное значение приобретает разработка методов повышения эффективности извлечения углеводородов в месторождениях с нетрадиционными запасами, содержащими в больших количествах газовый конденсат. Это делает актуальным развитие методов математического моделирования, реалистично описывающих процессы фильтрации газоконденсатной смеси в пористой среде.

    В данной работе рассматривается математическая модель, описывающая динамику изменения давления, скорости и концентрации компонент двухкомпонентной двухфазовой смеси, поступающей в лабораторную модель пласта, заполненную пористым веществом с известными физико-химическими свойствами. Математическая модель описывается системой нелинейных пространственно-одномерных дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями. Лабораторные эксперименты показывают, что в течение конечного времени система стабилизируется, что дает основание перейти к стационарной постановке задачи.

    Численное решение сформулированной системы обыкновенных дифференциальных уравнений реализовано в среде Maple на основе метода Рунге–Кутты с автоматическим выбором шага. Показано, что полученные на этой основе физические параметры двухкомпонентной газоконденсатной смеси из метана и н-бутана, характеризующие моделируемую систему в режиме стабилизации, хорошо согласуются с имеющимися экспериментальными данными.

    Это подтверждает реалистичность выбранного подхода и обоснованность его дальнейшего развития и применения для компьютерного моделирования неравновесных физических процессов в газоконденсатных смесях в пористой среде с целью выработки в перспективе практических рекомендаций по увеличению извлекаемости углеводородного газоконденсата из природных месторождений. В работе представлена математическая постановка системы нелинейных уравнений в частных производных и соответствующей стационарной задачи, описан метод численного исследования, обсуждаются полученные численные результаты в сравнении с экспериментальными данными.

    Просмотров за год: 18. Цитирований: 2 (РИНЦ).
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.