Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'вычисления большого объема.':
Найдено статей: 19
  1. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

  2. Широкова Е.Н., Садин Д.В.
    Волновые и релаксационные эффекты при истечении газовзвеси, частично заполняющей цилиндрический канал
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1495-1506

    Работа посвящена изучению волновых и релаксационных эффектов при импульсном истечении смеси газа с большим содержанием твердых частиц из цилиндрического канала при его начальном частичном заполнении. Задача сформулирована в двухскоростной двухтемпературной постановке и решалась численно гибридным методом крупных частиц второго порядка аппроксимации. Численный алгоритм реализован в виде параллельных вычислений с использованием базовых языковых средств Free Pascal. Применимость и точность метода для волновых потоков концентрированных газовзвесей подтверждены сопоставлением с тестовыми асимптотически точными решениями. Погрешность расчета на сетке невысокой детализации вх арактерных зонах течения двухфазной среды составила 10−6 . . . 10−5.

    На основе волновой диаграммы выполнен анализ физической картины истечении газовзвеси, частично заполняющей цилиндрический канал. Установлено, что в зависимости от степени начального заполнения канала формируются различные режимы истечения. Первый режим реализуется при небольшой степени загрузки камеры высокого давления, при которой левая граница смеси газа и частиц пересекает выходное сечение до прихода отраженной от дна канала волны разрежения. При этом достигается максимальное значение массового расхода смеси. Другие режимы формируются в случаях большего начального заполнения канала, когда отраженные от дна канала волны разрежения взаимодействуют со слоем газовзвеси и уменьшают интенсивность ее истечения.

    Изучено влияние релаксационных свойств при изменении размеров частиц на динамику ограниченного слоя газодисперсной среды. Сопоставление истечения ограниченного слоя газовзвеси с различными размерами частиц показывает, что для мелких частиц (число Стокса меньше 0,001) наблюдается аномальное явление одновременного существования ударно-волновых структур в сверх- и дозвуковом потоке газа и взвеси. С увеличением размеров дисперсных включений скачки уплотнения в области двухфазной смеси сглаживаются, а для частиц (число Стокса больше 0,1) — практически исчезают. При этом ударно-волновая конфигурация сверхзвукового газового потока на выходе из канала сохраняется, а положения и границы энергонесущих объемов газовзвеси при изменении размеров частиц близки.

  3. Коганов А.В., Ракчеева Т.А., Приходько Д.И.
    Сравнительный анализ адаптации человека к росту объема зрительной информации в задачах распознавания формальных символов и содержательных изображений
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 571-586

    Мы описываем инженерно-психологический эксперимент, продолжающий исследование способов адаптации человека к росту сложности логических задач методом предъявления серий задач нарастающей сложности, которая определяется объемом исходных данных. Задачи требуют вычислений в ассоциативной или неассоциативной системе операций. По характеру изменения времени решения задачи в зависимости от числа необходимых операций можно делать вывод о чисто последовательном способе решения задач или о подключении к решению дополнительных ресурсов мозга в параллельном режиме. В ранее опубликованной экспериментальной работе человек в процессе решения ассоциативной задачи распознавал цветные картинки с содержательными изображениями. В новом исследовании аналогичная задача решается для абстрактных монохромных геометрических фигур. Анализ результата показал, что для второго случая значительно снижается вероятность перехода испытуемого на параллельный способ обработки зрительной информации. Метод исследования основан на предъявлении человеку задач двух типов. Один тип задач содержит ассоциативные вычисления и допускает параллельный алгоритм решения. Другой тип задач контрольный, содержит задачи, в которых вычисления неассоциативные и параллельные алгоритмы решения неэффективны. Задача распознавания и поиска заданного объекта ассоциативна. Параллельная стратегия значительно ускоряет решение при сравнительно малых дополнительных затратах ресурсов. В качестве контрольной серии задач (для отделения параллельной работы от ускорения последовательного алгоритма) используется, как и в предыдущем эксперименте, неассоциативная задача сравнения в циклической арифметике, представленной в наглядной форме игры «камень, ножницы, бумага». В этой задаче параллельный алгоритм требует работы большого числа процессоров с малым коэффициентом эффективности. Поэтому переход человека на параллельный алгоритм решения этой задачи практически исключен и ускорение обработки входной информации возможно только путем повышения быстродействия. Сравнение зависимости времени решения от объема исходных данных для двух типов задач позволяет выявить четыре типа стратегий адаптации к росту сложности задачи: равномерная последовательная, ускоренная последовательная, параллельные вычисления (там, где это возможно) или неопределенная (для данного метода) стратегия. Уменьшение части испытуемых, которые переходят на параллельную стратегию при кодировании входной информации формальными изображениями, показывает эффективность кодов, вызывающих предметные ассоциации. Они повышают скорость восприятия и переработки информации человеком. Статья содержит предварительную математическую модель, которая объясняет это явление. Она основана на появлении второго набора исходных данных, который возникает у человека в результате узнавания изображенных предметов.

  4. Коганов А.В., Ракчеева Т.А., Приходько Д.И.
    Экспериментальное выявление организации мысленных вычислений человека на основе алгебр разной ассоциативности
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 311-327

    Работа продолжает исследования по способности человека повышать производительность обработки информации, используя параллельную работу или повышение быстродействия анализаторов. Человек получает серию задач, решение которых требует переработки известного количества информации. Регистрируются время и правильность решения. По правильно решенным задачам определяется зависимость среднего времени решения от объема информации в задаче. В соответствии с предложенной ранее методикой задачи содержат вычисления выражений в двух алгебрах, одна из которых ассоциативная, а другая неассоциативная. Для облегчения работы испытуемых в опыте были использованы образные графические изображения элементов алгебры. Неассоциативные вычисления реализовывались в форме игры «Камень, ножницы, бумага». Надо было определить символ-победитель в длинной строке этих рисунков, считая, что они возникают последовательно слева направо и играют с предыдущим символом победителем. Ассоциативные вычисления были основаны на распознавании рисунков из конечного набора простых изображений. Надо было определить, какого рисунка из этого набора в строке не хватает, либо констатировать, что все рисунки присутствуют. В каждой задаче отсутствовало не более одной картинки. Вычисления в ассоциативной алгебре допускают параллельный счет, а при отсутствии ассоциативности возможны только последовательные вычисления. Поэтому анализ времени решения серий задач позволяет выявить последовательную равномерную, последовательную ускоренную и параллельную стратегии вычислений. В экспериментах было установлено, что для решения неассоциативных задач все испытуемые применяли равномерную последовательную стратегию. Для ассоциативных задач все испытуемые использовали параллельные вычисления, а некоторые использовали параллельные вычисления с ускорением по мере роста сложности задачи. Небольшая часть испытуемых при большой сложности, судя по эволюции времени решения, дополняла параллельный счет последовательным этапом вычислений (возможно, для контроля решения). Разработан специальный метод оценки скорости переработки входной информации человеком. Он позволил оценить уровень параллельности расчета в ассоциативных задачах. Была зарегистрирована параллельность уровня от двух до трех. Характерная скорость обработки информации в последовательном случае (примерно полтора символа в секунду) вдвое меньше типичной скорости распознавания изображений человеком. Видимо, разница времени обработки расходуется собственно на процесс вычислений. Для ассоциативной задачи в случае минимального объема информации время решения либо близко к неассоциативному случаю, либо меньше до двух раз. Вероятно, это связано с тем, что для малого числа символов распознавание практически исчерпывает вычисления для использованной неассоциативной задачи.

    Просмотров за год: 16.
  5. Найштут Ю.С.
    О границе упругопластических тел минимального объема
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515

    В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.

    Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.

    Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.

    Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.

    Просмотров за год: 8.
  6. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

  7. Минкин А.С., Книжник А.А., Потапкин Б.В.
    Реализация алгоритмов межатомного взаимодействия с использованием технологии OpenCL
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 549-558

    Моделирование углеродных наноструктур методом классической молекулярной динамики требует больших объемов вычислений. Один из способов повышения производительности соответствующих алгоритмов состоит в их адаптации для работы с SIMD-подобными архитектурами, в частности, с графическими процессорами. В данной работе рассмотрены особенности алгоритмов вычисления многочастичного взаимодействия на основе классических потенциалов Терсоффа и погруженного атома с использованием технологии OpenCL. Стандарт OpenCL позволяет обеспечить универсальность и переносимость алгоритмов и может быть эффективно использован для гетерогенных вычислений. В данной работе сделана оценка производительности OpenCL алгоритмов вычисления межатомного взаимодействия для систем на базе центральных и графических процессоров. Показано, что использование атомарных операций эффективно для вычисления потенциала Терсоффа и неэффективно в случае потенциала погруженного атома. Оценка производительности показывает значительное ускорение GPU реализации алгоритмов вычисления потенциалов межатомного взаимодействия по сравнению с соответствующими однопоточными алгоритмами.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  8. Ригли Т., Рид Р., Мелладо Б.
    Описание тестирования памяти однокристальных систем на основе ARM
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 607-613

    Мощность вычислений традиционно находится в фокусе при разработке крупномасштабных вычислительных систем, в большинстве случаев такие проекты остаются плохо оборудованными и не могут эффективно справляться с ориентированными на высокую производительность рабочими нагрузками. Кроме того, стоимость и вопросы энергопотребления для крупномасштабных вычислительных систем всё ещё остаются источником беспокойства. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах в манере, которая обеспечивает массивное распараллеливание и высокую пропускную способность, производительность (относительно существующих крупномасштабных вычислительных проектов). Предоставление большего приоритета производительности и стоимости повышает значимость производительности оперативной памяти и оптимизации проекта до высокой производительности всей системы. Используя несколько эталонных тестов производительности оперативной памяти для оценки различных аспектов производительности RAM и кэш-памяти, мы даем описание производительности четырех различных моделей однокристальной системы на основе ARM, а именно Cortex-A9, Cortex-A7, Cortex-A15 r3p2 и Cortex-A15 r3p3. Затем мы обсуждаем значимость этих результатов для вычислений большого объема и потенциала для ARM- процессоров.

  9. Устименко О.В.
    Особенности управления данными в DIRAC
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744

    Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.

    Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.

    В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.

    Просмотров за год: 2.
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.