Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'истечение':
Найдено статей: 10
  1. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 669-671
  2. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 801-803
  3. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1415-1418
  4. Жлуктов С.В., Аксёнов А.А., Кураносов Н.С.
    Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825

    В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.

    Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.

  5. Фишер Ю.В., Щеляев А.Е.
    Верификация расчетных характеристик сверхзвуковых турбулентных струй
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 21-35

    В статье приводятся результаты верификационных расчетов в программном комплексе вычислительной аэро-, гидродинамики FlowVision характеристик сверхзвуковых турбулентных струй. Численное моделирование в статье охватывает несколько известных экспериментов по исследованию сверхзвуковых струй, находящихся в свободном доступе. Представленные тестовые случаи включают в себя тесты Сейнера с числом Маха на срезе $M = 2$ при расчетном $(n = 1)$ и нерасчетном $(n = 1.47)$ истечении из сопла в широком диапазоне температур газа. В работе также проведен численный эксперимент по распространению сверхзвуковой струи в спутном сверхзвуковом потоке $M = 2.2$. Для данного теста заданы параметры, определенные в эксперименте Putnam: степень понижения давления в сопле $\mathrm{NPR} = 8.12$ и полная температура $T = 317 \, \mathrm{K}$.

    Показано сравнение расчетов FlowVision с экспериментальными и полученными в других расчетных кодах данными. Наилучшее совпадение с экспериментом Сейнера среди рассмотренных моделей турбулентности получено при использовании стандартной $k–\varepsilon$ модели турбулентности с установленной поправкой на сжимаемость по модели Wilcox. Достигнуто согласование с экспериментальными данными на дальнем следе до 7 % по скорости потока на оси сопла. Для струи в спутном потоке расчетная характеристика (число Маха) отличается на 3 % от экспериментальной.

    В работе определены общие рекомендации к построению методики моделирования FlowVision сверхзвуковых турбулентных струй. В ходе исследования сходимости по сетке получены оптимальные размеры ячеек расчетной сетки: для расчетного истечения достаточно 40 ячеек по радиусу сопла и в области формирования струи, а для нерасчетных режимов необходимо не менее 80 ячеек по радиусу для точного моделирования ударно-волновой структуры вблизи выхода из сопла.

    Влияние применяемых моделей турбулентности показано на примере расчета теста Сейнера. SST-модель турбулентности, применяемая в FlowVision, существенно занижает скорость на оси сопла, для расчета струй данная модель не рекомендуется даже для предварительных оценок. Стандартная $k–\varepsilon$ модель без учета сжимаемости также несколько занижает скорость газа. Модель турбулентности KEFV, разработанная для FlowVision, показывает хорошее согласование и несколько завышает «дальнобойность» струи. И наилучшее совпадение с экспериментом по исследуемым характеристикам турбулентных струй получено при расчетах на стандартной $k–\varepsilon$ модели с учетом сжимаемости, соответствующей модели Wilcox. Представленная методика может быть взята за основу при моделировании истечения из сверхзвуковых сопел более сложной геометрии.

    Просмотров за год: 43.
  6. Жаркова В.В., Щеляев А.Е., Дядькин А.А., Павлов А.О., Симакова Т.В.
    Расчет гидродинамических воздействий на возвращаемый аппарат при посадке на воду
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 37-46

    В работе представлены результаты моделирования расчетных случаев приводнения возвращаемого аппарата (ВА) пилотируемого транспортного корабля нового поколения в условиях штиля. Рассмотрены случаи посадки ВА с работающими и с выключенными двигательными установками.

    Задача приводнения ВА моделировалась в рамках двухфазной постановки с наличием двух несмешивающихся фаз: воды и газа, состоящего из воздуха и продуктов сгорания, поступающих из двигательной установки. Параметры течения в каждой фазе резко отличаются друг от друга по величине плотности и скорости распространения звука. Истечение продуктов сгорания из сопловых установок характеризуется высокими скоростями и давлениями, что усложняет задачу, по сравнению со свободным падением ВА в воду. В расчетах используется упрощение постановки задачи, в котором при взаимодействии горячих струй с водой кипение, испарение и образование водяного пара не учитываются. Газовые струи только нагревают и вытесняют воду.

    Для моделирования переноса межфазных границ применяется метод VOF (Volume of fluid), где перенос контактной поверхности описывается конвективным уравнением, а поверхностное натяжение на межфазной границе учитывается давлением Лапласа. Ключевой особенностью метода является расщепление поверхностных ячеек, куда заносятся данные соответствующей фазы. Уравнения для обеих фаз (уравнения неразрывности, импульса, энергии и другие) в поверхностных ячейках решаются совместно.

    Моделирование приводнения ВА занимает длительное время, что связанно с особенностями явного расчета уровня границы раздела фаз (свободной поверхности). Для получения качественных результатов свободная поверхность должна быть разрешена большим количеством расчетных ячеек, но при этом за один шаг интегрирования перемещаться не более чем на одну ячейку.

    В процессе приземления исследовались гидродинамическое воздействие на ВА, динамика его движения и остойчивость ВА после приводнения, оценивались продольные перегрузки. Полученные данные использовались для анализа нагружения и прочности конструкции корпуса ВА, а также его отдельных элементов.

    Просмотров за год: 30.
  7. Долгов Е.В., Колосов Н.С., Фирсов А.А.
    Исследование влияния искрового разряда на смешение струи газообразного топлива со сверхзвуковым воздушным потоком
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 849-860

    В работе представлены результаты численного моделирования влияния протяженного искрового разряда на динамику перемешивания инжектируемой газовой струи со сверхзвуковым воздушным потоком. Расчеты проводились в программном комплексе FlowVision. Подача топлива осуществляется при помощи инжектора, расположенного на стенке канала, а разряд организован вблизи стенки ниже по потоку относительно инжектора. Моделирование электрического искрового разряда выполнено при помощи объемного источника тепла. С целью описания принципиального вида плазменного актуатора для ускорения перемешивания в сверхзвуковом потоке (число Маха М = 2) в ходе исследования выполнено варьирование энерговклада в разряд в диапазоне 100–500 мДж на один импульс, а также определено влияние формы и местоположения разряда относительно топливного инжектора. Проведено исследование режимов инжекции топлива в сверхзвуковой воздушный поток и найден оптимальный режим истечения струи газа для исследования влияния искрового разряда на смешение. Разработан метод анализа картины возмущений границы раздела «топливо–окислитель», вызванных работой импульсного искрового разряда. Подготовлена программа в среде LabView для получения количественной характеристики для дальнейшего сравнения полученных результатов с экспериментальными данными.

    Результаты моделирования позволяют сделать вывод, что протяженный искровой разряд, расположенный ниже по потоку относительно инжектора и расположенный вдоль потока, обеспечивает максимальное увеличение границы раздела между струей топлива и основным потоком. Типичная частота повторения импульсов разряда в импульсно-периодическом режиме должна составлять более 6 кГц при длине разряда ~10 мм, чтобы обеспечить постоянное влияние на смешение в потоке со скоростью 500 м/с.

  8. Широкова Е.Н., Садин Д.В.
    Волновые и релаксационные эффекты при истечении газовзвеси, частично заполняющей цилиндрический канал
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1495-1506

    Работа посвящена изучению волновых и релаксационных эффектов при импульсном истечении смеси газа с большим содержанием твердых частиц из цилиндрического канала при его начальном частичном заполнении. Задача сформулирована в двухскоростной двухтемпературной постановке и решалась численно гибридным методом крупных частиц второго порядка аппроксимации. Численный алгоритм реализован в виде параллельных вычислений с использованием базовых языковых средств Free Pascal. Применимость и точность метода для волновых потоков концентрированных газовзвесей подтверждены сопоставлением с тестовыми асимптотически точными решениями. Погрешность расчета на сетке невысокой детализации вх арактерных зонах течения двухфазной среды составила 10−6 . . . 10−5.

    На основе волновой диаграммы выполнен анализ физической картины истечении газовзвеси, частично заполняющей цилиндрический канал. Установлено, что в зависимости от степени начального заполнения канала формируются различные режимы истечения. Первый режим реализуется при небольшой степени загрузки камеры высокого давления, при которой левая граница смеси газа и частиц пересекает выходное сечение до прихода отраженной от дна канала волны разрежения. При этом достигается максимальное значение массового расхода смеси. Другие режимы формируются в случаях большего начального заполнения канала, когда отраженные от дна канала волны разрежения взаимодействуют со слоем газовзвеси и уменьшают интенсивность ее истечения.

    Изучено влияние релаксационных свойств при изменении размеров частиц на динамику ограниченного слоя газодисперсной среды. Сопоставление истечения ограниченного слоя газовзвеси с различными размерами частиц показывает, что для мелких частиц (число Стокса меньше 0,001) наблюдается аномальное явление одновременного существования ударно-волновых структур в сверх- и дозвуковом потоке газа и взвеси. С увеличением размеров дисперсных включений скачки уплотнения в области двухфазной смеси сглаживаются, а для частиц (число Стокса больше 0,1) — практически исчезают. При этом ударно-волновая конфигурация сверхзвукового газового потока на выходе из канала сохраняется, а положения и границы энергонесущих объемов газовзвеси при изменении размеров частиц близки.

  9. Ситников С.С., Черемисин Ф.Г., Сазыкина Т.А.
    Моделирование начальной стадии истечения двухкомпонентной разреженной газовой смеси через тонкую щель в вакуум
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 747-759

    В работе рассматривается процесс формирования течения при истечении двухкомпонентной газовой смеси через тонкую щель в вакуум. Предлагается подход к моделированию течений разреженных газовых смесей в переходном режиме на основе прямого решения кинетического уравнения Больцмана, в котором для вычисления интегралов столкновения используется консервативный проекционно-интерполяционный метод. Приводятся расчетные формулы, детально описана методика вычислений применительно к течению бинарной газовой смеси. В качестве потенциала взаимодействия молекул используется потенциал Леннарда–Джонса. Разработана программно-моделирующая среда, позволяющая проводить исследование течений газовых смесей в переходном режиме на системах кластерной архитектуры. За счет использования технологий распараллеливания кода получено ускорение счета в 50–100 раз. Проведено численное моделирование нестационарного двумерного истечения бинарной аргон-неоновой газовой смеси в вакуум через тонкую щель для различных значений числа Кнудсена. Получены графики зависимости выходного потока компонентов газовой смеси от времени в процессе установления течения. Обнаружены нестационарные области сильного разделения компонентов газовой смеси, в которых отношение концентраций достигает 10 и более. Обнаруженный эффект может иметь приложения в задаче разделения газовых смесей.

  10. Бруяка В.А., Гринев А.М., Ремнев В.В., Сморкалов Д.В.
    Моделирование истечения промывочной жидкости из гидромониторных отверстий PDC-долот
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 649-658

    В статье представлены результаты математического моделирования истечения промывочной жидкости из гидромониторных отверстий PDC-долота. Получены картины распределения скорости и давления жидкости в зоне забоя, исследованы причины размывания внутренней полости гидравлического канала долота.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.