Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'DIRAC':
Найдено статей: 4
  1. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Breev A.I., Shapovalov A.V., Kozlov A.V.
    Integration the relativistic wave equations in Bianchi IX cosmology model
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443

    We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.

    Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.

    The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.

    Просмотров за год: 5.
  2. Кречет В.Г., Ошурко В.Б., Киссер А.Э.
    Космологические модели Вселенной, не имеющей Начала и сингулярности
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 473-486

    Предлагается новый тип космологических моделей, космологических моделей для Вселенной, не имеющей Начала, то есть существовавшей всегда, и эволюционирующей из бесконечно далекого прошлого.

    Предлагаемые космологические модели являются альтернативными по отношению к космологическим моделям, основывающимся на так называемой теории Большого взрыва, по которой Вселенная имеет конечный возраст и произошла из начальной сингулярности.

    В этой теории, по нашему мнению, есть определенные проблемы, которые в предлагаемых нами космологических моделях мы избегаем.

    В наших космологических моделях Вселенная, развиваясь из бесконечно далекого прошлого, сжимаясь, достигает конечного минимума расстояний между объектами порядка комптоновской длины волны $\lambda_C$ адронов и максимальной плотности вещества, соответствующей адронной эре Вселенной, и затем расширяется, проходя все стадии своей эволюции, установленные астрономическими наблюдениями, вплоть до эры инфляции.

    Материальной основой, обеспечивающей принципиальный характер эволюции Вселенной в предлагаемых космологических моделях, является нелинейное дираковское спинорное поле $\psi (x^k)$ с нелинейностью в лагранжиане поля типа $\beta (\bar\psi\psi)^n$ ($\beta = const$, $n$ — рациональное число), где $\psi(x^k)$ — 4-компонентный дираковский спинор, а $\bar{\psi}$ — сопряженный спинор.

    Кроме спинорного поля $\psi$ в космологических моделях у нас присутствуют и другие компоненты материи в виде идеальной жидкости с уравнением состояния $p = w\varepsilon$ ($w = const$), при различных значениях коэффициента $w$ $(−1 < w < 1)$, которые обеспечивают эволюцию Вселенной с надлежащими периодами развития в соответствии с установленными наблюдаемыми данными. Здесь $p$ — давление, $\varepsilon = \rho c^2$ — плотность энергии, $\rho$ — плотность массы, а $c$ — скорость света в вакууме.

    Оказалось, что наиболее близкими к реальности являются космологические модели с нелинейным спинорным полем с показателем нелинейности $n = 2$.

    В этом случае нелинейное спинорное поле представляется уравнением Дирака с кубической нелинейностью.

    Но такое уравнение есть нелинейное спинорное уравнение Иваненко–Гейзенберга, которое В. Гейзенберг взял в качестве основы для построения единой спинорной теории материи.

    Удивительное совпадение, что одно и то же нелинейное спинорное уравнение может быть основой для построения теории двух разных фундаментальных объектов природы, эволюционирующей Вселенной и физической материи.

    Разработки представляемых космологических моделей дополняются их компьютерными исследованиями, результаты которых в работе представлены графически.

    Krechet V.G., Oshurko V.B., Kisser A.E.
    Cosmological models of the Universe without a Beginning and without a singularity
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486

    A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.

    These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.

    In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.

    In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.

    The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.

    In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.

    We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.

    In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.

    But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.

    It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.

    The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.

  3. Белов С.Д., Ден Ц., Ли В., Линь Т., Пелеванюк И.С., Трофимов В.В., Ужинский А.В., Янь Т., Янь С., Чжак Г., Чжао С., Чжан С., Жемчугов А.С.
    Распределенные вычисления для эксперимента BES-III
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 469-473

    В 2009 году в Пекине заработал детектор BES-III (Beijing Spectrometer) [1] ускорителя BEPC-II (Beijing Electron–Positron Collider). Запущенный еще в 1989 году BEPC за время своей работы предоставил данные для целого ряда открытий в области физики очарованных частиц. В свою очередь на BES-III удалось получить крупнейшие наборы данных для J/ ψ, ψ' и ψ частиц при энергии ускорителя 2.5– 4.6 ГэВ. Объемы данных с эксперимента (более 1 ПБ) достаточно велики, чтобы задуматься об их распределенной обработке. В данной статье представлена общая информация, результаты и планы развития проекта распределенной обработки данных эксперимента BES-III.

    Belov S.D., Deng Z., Li W., Lin T., Pelevanyuk I., Trofimov V.V., Uzhinskiy A.V., Yan T., Yan X., Zhang G., Zhao X., Zhang X., Zhemchugov A.S.
    BES-III distributed computing status
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 469-473

    The BES-III experiment at the IHEP CAS, Beijing, is running at the high-luminosity e+e- collider BEPC-II to study physics of charm quarks and tau leptons. The world largest samples of J/psi and psi' events are already collected, a number of unique data samples in the energy range 2.5–4.6 GeV have been taken. The data volume is expected to increase by an order of magnitude in the coming years. This requires to move from a centralized computing system to a distributed computing environment, thus allowing the use of computing resources from remote sites — members of the BES-III Collaboration. In this report the general information, latest results and development plans of the BES-III distributed computing system are presented.

    Просмотров за год: 3.
  4. Устименко О.В.
    Особенности управления данными в DIRAC
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 741-744

    Целью данной работы является ознакомление с технологиями хранения больших данных и перспективами развития технологий хранения для распределенных вычислений. Приведен анализ популярных технологий хранения и освещаются возможные ограничения использования.

    Основными проблемами развития технологий хранения данных являются хранение сверхбольших объемов данных, отсутствие качества в обработке таких данных, масштабируемость, отсутствие быстрого доступа к данным и отсутствие реализации интеллектуального поиска данных.

    В работе рассматриваются особенности организации системы управления данными (DMS) программного продукта DIRAC. Приводится описание устройства, функциональности и способов работы с сервисом передачи данных (Data transfer service) для экспериментов физики высоких энергий, которые требуют вычисления задач с широким спектром требований с точки зрения загрузки процессора, доступа к данным или памяти и непостоянной загрузкой использования ресурсов.

    Ustimenko O.V.
    Features DIRAC data management
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 741-744

    The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.

    The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.

    Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.

    Просмотров за год: 2.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.