Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'вращение':
Найдено статей: 19
  1. Шовин В.А.
    Поиск косоугольной факторной структуры методом «облимакс»
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 123-130

    Предлагается усовершенствованный метод косоугольного вращения «облимакс». Рассматривается проблема выбора пар факторов. Предлагается оригинальная последовательность выбора пар факторов, приводящая к наилучшей факторной структуре по критерию «облимакс».

  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 559-561
    Просмотров за год: 4.
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 689-692
  4. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Просмотров за год: 5.
  5. Лукашенко В.Т., Максимов Ф.А.
    Моделирование полета осколков метеорного тела с учетом вращения
    Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 593-612

    Алгоритм решения сопряженной аэродинамической и баллистической задач, разработанный на основе метода моделирования с помощью системы сеток, дополнен расчетным механизмом, позволяющим учитывать перемещение и вращение тел относительно центров масс. Для заданной конфигурации тел решается задача обтекания методом установления, после этого состояние системы перерассчитывается через малый промежуток времени. Итерационным способом оказывается возможным проследить динамику системы на больших интервалах времени. Алгоритм реализован для исследования полета системы тел с учетом их относительного положения и вращения. Выполнено тестирование алгоритма на задаче обтекания тела сегментально-конической формы. Показано хорошее согласование результатов с экспериментальными исследованиями. Алгоритм применен для расчета задачи о сверхзвуковом полете вращающегося тела. Для тел прямоугольной формы, имитирующих удлиненные осколки метеорного тела, показано, что для удлиненных тел аэродинамически более устойчивым положением является полет с большей по площади стороной поперек направления полета. Это приводит фактически к полету тел с максимально возможным аэродинамическим сопротивлением из-за максимальной площади миделя. Алгоритм применен для расчета задачи о разлете двух одинаковых тел прямоугольной формы с учетом их вращения. Вращение приводит к тому, что тела разлетаются не только под действием расталкивающей аэродинамической силы, но и дополнительной боковой силы из-за приобретения угла атаки. Скорость разлета двух осколков метеорного тела удлиненной формы при учете вращения увеличивается до трех раз по сравнению с вариантом, когда предполагается, что тела не вращаются. Исследование проведено в целях оценки влияния различных факторов на скорость разлета осколков метеорного тела после разрушения для построения возможных траекторий выпавших на землю метеоритов. Разработанный алгоритм решения сопряженной аэродинамической и баллистической задач с учетом относительного перемещения и вращения тел может быть использован для решения технических задач, например для исследования динамики разделения ступеней летательного аппарата.

    Просмотров за год: 6.
  6. Михайленко С.А., Шеремет М.А.
    Моделирование конвективно-радиационного теплопереноса в дифференциально обогреваемой вращающейся полости
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 195-207

    Проведено математическое моделирование нестационарных режимов естественной конвекции и поверхностного излучения в замкнутой вращающейся квадратной полости. Рассматриваемая область решения имела две противоположные изотермические стенки, поддерживаемые при постоянных низкой и высокой температурах, остальные стенки являлись адиабатическими. Стенки считались диффузно-серыми. Анализируемая полость вращалась с постоянной угловой скоростью относительно оси, проходящей через центр полости и ориентированной ортогонально области решения. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости» на основе приближений Буссинеска и диатермичности рабочей среды, была реализована численно методом конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А. А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А. А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Разработанный вычислительный код был протестирован на множестве сеток, а также верифицирован путем сопоставления полученных результатов при решении модельной задачи с экспериментальными и численными данными других авторов.

    Численные исследования нестационарных режимов естественной конвекции и поверхностного теплового излучения в замкнутой вращающейся полости проведены при следующих значениях безразмерных параметров: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. Все распределения были получены для двадцатого полного оборота полости, когда наблюдается установление периодической картины течения и теплопереноса. В результате анализа установлено, что при малой угловой скорости вращения полости возможна интенсификация течения, а дальнейший рост скорости вращения приводит к ослаблению конвективного течения. Радиационное число Нуссельта незначительно изменяется при варьировании числа Тейлора.

    Просмотров за год: 20.
  7. Грачев В.А., Найштут Ю.С.
    Сетчатые развертывающиеся оболочки из полос, образованных трапециевидными пластинами
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 63-73

    Изучаются развертывающиеся системы, составленные из набора трапециевидных пластин. Средние линии пластин в первоначальном положении пакета представляют собой плоскую кривую. Доказывается, что при разворачивании пакета из тонких пластинок, образуется поверхность, аппроксимирующая оболочку практически любой кривизны. Строится кинематика континуальной модели методом подвижного репера Картана, обобщающая ранее опубликованные результаты авторов. Показаны приложения к оболочкам вращения. Представлены экспериментальные модели развертывающихся систем.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  8. В данной работе представлены результаты верификации исследований гидродинамических воздействий на возвращаемый аппарат сегментально-конической формы при посадке на воду. Для анализа используется программный комплекс FlowVision. Целью работы является подтверждение возможности использования данного программного комплекса для решения поставленных задач на основе сравнения расчетных и экспериментальных данных, полученных на моделях посадочного модуля корабля Apollo и возвращаемого аппарата пилотируемого транспортного корабля нового поколения, разрабатываемого в РКК «Энергия». Сравнивались значения давлений на поверхности моделей аппаратов в процессе погружения в воду и параметры движения центра масс.

    Показано хорошее согласование экспериментальных и расчетных данных по силовому действию на конструкцию аппарата при приводнении и параметрам его движения в водной среде. Компьютерное моделирование адекватно отражает влияние на процесс приводнения начальных скоростей и углов входа аппарата в водную среду.

    Использование компьютерного моделирования обеспечивает одновременное определение всей информации, необходимой для исследования в процессе проектирования изделия особенностей посадки на воду: гидродинамические воздействия для расчета прочности конструкции, параметры и динамику движения центра масс и вращения аппарата вокруг центра масс с целью оценки условий приводнения экипажа, а также остойчивость аппарата после приводнения.

    Полученные результаты подтверждают необходимость использования программного комплекса FlowVision для исследования процесса приводнения аппарата и исследований влияния различных режимов посадки в широком диапазоне изменения начальных условий, что позволяет существенно сократить объём дорогостоящих экспериментальных исследований и реализовать условия посадки, трудновоспроизводимые в физическом эксперименте.

    Просмотров за год: 10.
  9. Бабаков А.В., Чечёткин В.М.
    Математическое моделирование вихревого движения в астрофизических объектах на основе газодинамической модели
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 631-643

    Рассматривается применение консервативного численного метода потоков для изучения вихревых структур в массивных, быстровращающихся компактных астрофизических объектах, находящихся в условиях самогравитации. Моделирование осуществляется для объектов с различной массой и скоростью вращения. Визуализируются картины вихревой структуры объектов. В расчетах используется газодинамическая модель, в которой газ принимается совершенным и невязким. Численная методика основана на конечно-разностной аппроксимации законов сохранения аддитивных характеристик среды для конечного объема. При этом используются upwind-аппроксимации плотностей распределения массы, компонент импульса и полной энергии. Для моделирования объектов, обладающих быстрым вращением, при эволюционном расчете осуществляется контроль сохранения компонент момента импульса, законы сохранения для которых не входят в систему основных уравнений. Эволюционный расчет осуществляется на основе параллельных алгоритмов, реализованных на вычислительном комплексе кластерной архитектуры. Алгоритмы основаны на стандартизованной системе передачи сообщений Message Passing Interface (MPI). При этом используются как блокирующие, так и неблокирующие процедуры обмена с контролем завершения операций. Осуществляется распараллеливание по пространству по двум или трем направле- ниям в зависимости от размера области интегрирования и параметров вычислительной сетки. Одновременно с распараллеливанием по пространству для каждой подобласти осуществляется распараллеливание по физическим факторам: расчет конвективного переноса и гравитационных сил реализуется параллельно на разных процессорах, что позволяет повысить эффективность алгоритмов. Показывается реальная возможность прямого вычисления гравитационных сил посредством суммирования взаимодействия между всеми конечными объемами в области интегрирования. Для методов конечного объема такой подход кажется более последовательным, чем решение уравнения Пуассона для гравитационного потенциала. Численные расчеты осуществлялись на вычислительном комплексе кластерной архитектуры с пиковой производительностью 523 TFlops. В расчетах использовалось до тысячи процессоров.

    Просмотров за год: 27.
  10. Говорухин В.Н., Филимонова А.М.
    Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426

    Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.

    В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.

    Просмотров за год: 16.
Страницы: следующая

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus