Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 3.
-
Исследование механизмов формирования сегментированных волн в активных средах
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 533-542Цитирований: 3 (РИНЦ).В данной работе предложены три возможных механизма формирования сегментированных волн и спиралей. Структуры такого рода были обнаружены в реакции Белоусова–Жаботинского, диспергированной в обращенной микроэмульсии аэрозоля OT. Первый механизм обусловлен взаимодействием двух подсистем, одна из которых возбудима, а другая неустойчива по Тьюрингу. Показано, как под воздействием поперечной неустойчивости из однородной гладкой спиральной волны формируется сегментированная спираль. В зависимости от свойств подсистем мы демонстрируем несколько различных по виду и форме сегментированных спиральных волн. В качестве второго механизма мы предлагаем «дробление» бегущей волны в окрестности бифуркационной точки коразмерности два, в которой пересекаются границы тьюринговской и волновой неустойчивостей. Наконец, мы показываем, что сегментированные волны могут возникать в некоторых простых двухкомпонентных моделях типа «реакция–диффузия», имеющих более одного стационарного состояния, в частности, в модели ФитцХью–Нагумо.
-
Эффекты воздействия электрического поля на химические структуры
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718Просмотров за год: 8.Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.
-
Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.
Ключевые слова: отображение, возбудимая клетка, осцилляторная клетка, синхронизация, пространственно-временная динамика.Цитирований: 3 (РИНЦ). -
Исследование индивидуально-ориентированных механизмов динамики одновидовой популяции с помощью логических детерминированных клеточных автоматов
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1279-1293Исследование логических детерминированных клеточноавтоматных моделей популяционной динамики позволяет выявлять детальные индивидуально-ориентированные механизмы функционирования экосистем. Выявление таких механизмов актуально в связи с проблемами, возникающими вследствие переэксплуатации природных ресурсов, загрязнения окружающей среды и изменения климата. Классические модели популяционной динамики имеют феноменологическую природу, так как являются «черными ящиками». Феноменологические модели принципиально затрудняют исследование локальных механизмов функционирования экосистем. Мы исследовали роль плодовитости и длительности восстановления ресурсов в механизмах популяционного роста, используя четыре модели экосистемы с одним видом. Эти модели являются логическими детерминированными клеточными автоматами и основаны на физической аксиоматике возбудимой среды с восстановлением. Было выявлено, что при увеличении времени восстановления ресурсов экосистемы происходит катастрофическая гибель популяции. Показано также, что большая плодовитость ускоряет исчезновения популяции. Исследованные механизмы важны для понимания механизмов устойчивого развития экосистем и сохранения биологического разнообразия. Обсуждаются перспективы представленного модельного подхода как метода прозрачного многоуровневого моделирования сложных систем.
Ключевые слова: популяционная динамика, клеточные автоматы, сложные системы, популяционные катастрофы, автоволны.Просмотров за год: 16. Цитирований: 3 (РИНЦ). -
Академическая сеть как возбудимая среда
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 177-183Просмотров за год: 6.В работе проведено моделирование распространения некой идеи в профессиональной виртуальной группе. Мы рассматриваем распространение возбуждения в неоднородной возбудимой среде высокой связности. Предполагается, что элементы сети образуют полный граф. Параметры элементов распределены по нормальному закону. Моделирование показало, что в зависимости от параметров в виртуальной группе интерес к идее может затухать или испытывать колебания. Наличие в сети постоянно возбужденного элемента достаточно высокой активности приводит к хаотизации — доля членов сообщества, активно интересующихся идеей, меняется нерегулярно.
-
Динамика активности в виртуальных сетях: сравнение модели распространения эпидемии и модели возбудимой среды
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1485-1499Модели распространения эпидемий широко применяются для моделирования социальной активности, например распространения слухов или паники. С другой стороны, для моделирования распространения активности традиционно используются модели возбудимых сред. Проведено моделирование распространения активности в виртуальном сообществе в рамках двух моделей: модели распространения эпидемий SIRS и модели возбудимой среды Винера – Розенблюта. Использованы сетевые версии этих моделей. Сеть предполагалась неоднородной: каждый элемент сети обладает индивидуальным набором характеристик, что соответствует различным психологическим типам членов сообщества. Структура виртуальной сети полагается соответствующей безмасштабной сети. Моделирование проводилось на безмасштабных сетях с различными значениями средней степени вершин. Дополнительно рассмотрен частный случай — полный граф, соответствующий узкой профессиональной группе, когда каждый член группы взаимодействует с каждым. Участники виртуального сообщества могут находиться в одном из трех состояний: 1) потенциальная готовность к восприятию определенной информации; 2) активный интерес к этой информации; 3) полное безразличие к этой информации. Эти состояния вполне соответствуют состояниям, которые обычно используют в моделях распространения эпидемий: 1) восприимчивый к ин- фекции субъект, 2) больной, 3) переболевший и более невосприимчивый к инфекции в силу приобретенного иммунитета или смерти от болезни. Сопоставление двух моделей показало их близость как на уровне формулировки основных положений, так и на уровне возможных режимов. Распространение активности по сети аналогично распространению инфекционных заболеваний. Показано, что активность в виртуальной сети может испытывать колебания или затухать.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"