Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Метод формирования тестовых сигналов для корреляционной идентификации нелинейных систем
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 721-733Просмотров за год: 1. Цитирований: 3 (РИНЦ).Разработан и протестирован новый метод формирования тестовых сигналов для корреляционной идентификации нелинейных динамических систем методом Ли–Шетцена. Для коррекции моментных функций тестовых сигналов применен численный алгоритм оптимизации Гаусса–Ньютона. В экспериментах получены тестовые воздействия длиной до 40 000 точек, позволяющие определять ядра Винера 2-го порядка с линейным разрешением до 32 точек, ядра Винера 3-го порядка с линейным разрешением до 12 точек, ядра Винера 4-го порядка с линейным разрешением до 8 точек.
-
Синхронные компоненты финансовых временных рядов
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 639-655В статье предлагается метод совместного анализа многомерных финансовых временных рядов, основанный на оценке набора свойств котировок акций в скользящем временном окне и последующем усреднении значений свойств по всем анализируемым компаниям. Основной целью анализа является построение мер совместного поведения временных рядов, реагирующих на возникновение синхронной или когерентной составляющей. Когерентность поведения характеристик сложной системы является важным признаком, позволяющим оценить приближение системы к резким изменениям своего состояния. Фундаментом для поиска предвестников резких изменений является общая идея увеличения корреляции случайных флуктуаций параметров системы по мере ее приближения к критическому состоянию. Приращения временных рядов стоимостей акций имеют выраженный хаотический характер и обладают большой амплитудой индивидуальных помех, на фоне которых слабый общий сигнал может быть выделен лишь на основе его коррелированности в разных скалярных компонентах многомерного временного ряда. Известно, что классические методы анализа, основанные на использовании корреляций между соседними отсчетами, являются малоэффективными при обработке финансовых временных рядов, поскольку с точки зрения корреляционной теории случайных процессов приращения стоимости акций формально имеют все признаки белого шума (в частности, «плоский спектр» и «дельта-образную» автокорреляционную функцию). В связи с этим предлагается перейти от анализа исходных сигналов к рассмотрению последовательностей их нелинейных свойств, вычисленных во временных фрагментах малой длины. В качестве таких свойств используются энтропия вейвлет-коэффициентов при разложении в базис Добеши, показатели мультифрактальности и авторегрессионная мера нестационарности сигнала. Построены меры син- хронного поведения свойств временных рядов в скользящем временном окне с использованием метода главных компонент, значений модулей всех попарных коэффициентов корреляции и множественной спектральной меры когерентности, являющейся обобщением квадратичного спектра когерентности между двумя сигналами. Исследованы акции 16 крупных российских компаний с начала 2010 по конец 2016 годов. С помощью предложенного метода идентифицированы два интервала времени синхронизации российского фондового рынка: с середины декабря 2013 г. по середину марта 2014 г. и с середины октября 2014 г. по середину января 2016 г.
Ключевые слова: финансовые временные ряды, вейвлеты, энтропия, мульти-фракталы, предсказуемость, синхронизация.Просмотров за год: 12. Цитирований: 2 (РИНЦ). -
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность. -
Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.
-
Анализ прогностических свойств тремора земной поверхности с помощью разложения Хуанга
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 939-958Предлагается метод анализа тремора земной поверхности, измеряемого средствами космической геодезии с целью выделения прогностических эффектов активизации сейсмичности. Метод иллюстрируется на примере совместного анализа совокупности синхронных временных рядов ежесуточных вертикальных смещений земной поверхности на Японских островах для интервала времени 2009–2023 гг. Анализ основан на разбиении исходных данных (1047 временных рядов) на блоки (кластеры станций) и последовательном применении метода главных компонент. Разбиение сети станций на кластеры производится методом k-средних из критерия максимума псевдо-статистики. Для Японии оптимальное число кластеров было выбрано равным 15. К временным рядам главных компонент от блоков станций применяется метод разложения Хуанга на последовательность независимых эмпирических мод колебаний (Empirical Mode Decomposition, EMD). Для обеспечения устойчивости оценок волновых форм EMD-разложения производилось усреднение 1000 независимых аддитивных реализаций белого шума ограниченной амплитуды. С помощью разложения Холецкого ковариационной матрицы волновых форм первых трех EMD-компонент в скользящем временном окне определены индикаторы аномального поведения тремора. Путем вычисления корреляционной функции между средними индикаторами аномального поведения и выде- лившейся сейсмической энергии в окрестности Японских островов установлено, что всплески меры ано- мального поведения тремора предшествуют выбросам сейсмической энергии. Целью статьи является про- яснение распространенных гипотез о том, что движения земной коры, регистрируемые средствами космической геодезии, могут содержать прогностическую информацию. То, что смещения, регистрируемые геодезическими методами, реагируют на последствия землетрясений, широко известно и многократно демонстрировалось. Но выделение геодезических эффектов, предвещающих сейсмические события, является значительно более сложной задачей. В нашей статье мы предлагаем один из методов обнаружения прогностических эффектов в данных космической геодезии.
-
Математические методы стабилизации структуры социальных систем при действии внешних возмущений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 845-857В статье рассматривается билинейная модель влияния внешних возмущений на стабильность струк- туры социальных систем. Исследуются подходы к стабилизации третьей стороной исходной системы, состоящей из двух групп, — путем сведения исходной системы к линейной системе с неопределенными параметрами и использования результатов теории линейных динамических игр с квадратичным критери- ем. На основе компьютерных экспериментов анализируется влияние коэффициентов условной модели социальной системы и параметров управления на качество стабилизации системы. Показано, что исполь- зование третьей стороной минимаксной стратегии в форме управления с обратной связью приводит к от- носительно близкому приближению численности второй группы (возбуждаемой внешними воздействия- ми) к приемлемому уровню даже при неблагоприятном периодическом динамическом воздействии.
Исследуется влияние на качество стабилизации системы одного из ключевых коэффициентов в кри- терии $(\varepsilon)$, используемого для компенсации воздействия внешних возмущений (последние присутствуют в линейной модели в форме неопределенности). С использованием операционного исчисления показыва- ется, что уменьшение коэффициента ε должно приводить к увеличению значений суммы квадратов уп- равления. Проведенные в статье компьютерные расчеты показывают также, что улучшение приближения структуры системы к равновесному уровню при уменьшении коэффициента $\varepsilon$ достигается за счет весьма резких изменений управления $V_t$ в начальный период, что может индуцировать переход части членов спокойной группы во вторую, возбужденную группу.
В статье исследуется также влияние на качество управления значений коэффициентов модели, ха- рактеризующих уровень социальной напряженности. Расчеты показывают, что повышение уровня соци- альной напряженности (при прочих равных условиях) приводит к необходимости значительного увели- чения третьей стороной усилий на стабилизацию, а также величины управления в начальный момент времени.
Результаты проведенного в статье статистического моделирования показывают, что рассчитанные управления с обратной связью успешно компенсируют случайные возмущения, действующие на соци- альную систему (как в форме независимых воздействий типа белый шум, так и в форме автокоррелиро- ванных воздействий).
Ключевые слова: модели, социальные группы, стабильность, линейные динамические системы, неопределенные параметры. -
Оценка качества кластеризации панельных данных с использованием методов Монте-Карло (на примере данных российской региональной экономики)
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1501-1513В работе рассматривается метод исследования панельных данных, основанный на использовании агломеративной иерархической кластеризации — группировки объектов на основании сходства и разли- чия их признаков в иерархию вложенных друг в друга кластеров. Применялись 2 альтернативных способа вычисления евклидовых расстояний между объектами — расстояния между усредненными по интервалу наблюдений значениями и расстояния с использованием данных за все рассматриваемые годы. Сравнивались 3 альтернативных метода вычисления расстояний между кластерами. В первом случае таким расстоянием считается расстояние между ближайшими элементами из двух кластеров, во втором — среднее по парам элементов, в третьем — расстояние между наиболее удаленными элементами. Исследована эффективность использования двух индексов качества кластеризации — индекса Данна и Силуэта для выбора оптимального числа кластеров и оценки статистической значимости полученных решений. Способ оценивания статистической достоверности кластерной структуры заключался в сравнении качества кластеризации, на реальной выборке с качеством кластеризаций на искусственно сгенерированных выборках панельных данных с теми же самыми числом объектов, признаков и длиной рядов. Генерация производилась из фиксированного вероятностного распределения. Использовались способы симуляции, имитирующие гауссов белый шум и случайное блуждание. Расчеты с индексом Силуэт показали, что случайное блуждание характеризуется не только ложной регрессией, но и ложной кластеризацией. Кластеризация принималась достоверной для данного числа выделенных кластеров, если значение индекса на реальной выборке оказывалось больше значения 95%-ного квантиля для искусственных данных. В качестве выборки реальных данных использован набор временных рядов показателей, характеризующих производство в российских регионах. Для этих данных только Силуэт показывает достоверную кластеризацию на уровне $p < 0.05$. Расчеты также показали, что значения индексов для реальных данных в целом ближе к значениям для случайных блужданий, чем для белого шума, но имеют значимые отличия и от тех, и от других. Визуально можно выделить скопления близко расположенных друг от друга в трехмерном признаковом пространстве точек, выделяемые также в качестве кластеров применяемым алгоритмом иерархической кластеризации.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"