Метод формирования тестовых сигналов для корреляционной идентификации нелинейных систем

 pdf (316K)

Разработан и протестирован новый метод формирования тестовых сигналов для корреляционной идентификации нелинейных динамических систем методом Ли–Шетцена. Для коррекции моментных функций тестовых сигналов применен численный алгоритм оптимизации Гаусса–Ньютона. В экспериментах получены тестовые воздействия длиной до 40 000 точек, позволяющие определять ядра Винера 2-го порядка с линейным разрешением до 32 точек, ядра Винера 3-го порядка с линейным разрешением до 12 точек, ядра Винера 4-го порядка с линейным разрешением до 8 точек.

Ключевые слова: нелинейные динамические системы, подход Винера–Вольтерра, корреляционные методы идентификации, метод Ли–Шетцена, тестовые сигналы, белый шум
Цитата: Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 721-733

Test-signals forming method for correlation identification of nonlinear systems

Тhe new test-signals forming method for correlation identification of a nonlinear system based on Lee–Shetzen cross-correlation approach is developed and tested. Numerical Gauss–Newton algorithm is applied to correct autocorrelation functions of test signals. The achieved test-signals have length less than 40 000 points and allow to measure the 2nd order Wiener kernels with a linear resolution up to 32 points, the 3rd order Wiener kernels with a linear resolution up to 12 points and the 4th order Wiener kernels with a linear resolution up to 8 points.

Keywords: nonlinear dynamic systems, Volterra–Wiener approach, system identification, cross-correlation approach, Lee–Shetzen method, test-signals, white noise

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00, 03.01.00, 03.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science