Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'анализ данных':
Найдено статей: 273
  1. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

  2. Двинских Д.М., Пырэу В.В., Гасников А.В.
    О связях задач стохастической выпуклой минимизации с задачами минимизации эмпирического риска на шарах в $p$-нормах
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 309-319

    В данной работе рассматриваются задачи выпуклой стохастической оптимизации, возникающие в анализе данных (минимизация функции риска), а также в математической статистике (минимизация функции правдоподобия). Такие задачи могут быть решены как онлайн-, так и офлайн-методами (метод Монте-Карло). При офлайн-подходе исходная задача заменяется эмпирической задачей — задачей минимизации эмпирического риска. В современном машинном обучении ключевым является следующий вопрос: какой размер выборки (количество слагаемых в функционале эмпирического риска) нужно взять, чтобы достаточно точное решение эмпирической задачи было решением исходной задачи с заданной точностью. Базируясь на недавних существенных продвижениях в машинном обучении и оптимизации для решения выпуклых стохастических задач на евклидовых шарах (или всем пространстве), мы рассматриваем случай произвольных шаров в $p$-нормах и исследуем, как влияет выбор параметра $p$ на оценки необходимого числа слагаемых в функции эмпирического риска.

    В данной работе рассмотрены как выпуклые задачи оптимизации, так и седловые. Для сильно выпуклых задач были обобщены уже имеющиеся результаты об одинаковых размерах выборки в обоих подходах (онлайн и офлайн) на произвольные нормы. Более того, было показано, что условие сильной выпуклости может быть ослаблено: полученные результаты справедливы для функций, удовлетворяющих условию квадратичного роста. В случае когда данное условие не выполняется, предлагается использовать регуляризацию исходной задачи в произвольной норме. В отличие от выпуклых задач седловые задачи являются намного менее изученными. Для седловых задач размер выборки был получен при условии $\gamma$-роста седловой функции по разным группам переменных. Это условие при $\gamma = 1$ есть не что иное, как аналог условия острого минимума в выпуклых задач. В данной статье было показано, что размер выборки в случае острого минимума (седла) почти не зависит от желаемой точности решения исходной задачи.

  3. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

  4. Янковская У.И., Старостенков М.Д., Захаров П.В.
    Молекулярно-динамическое исследование механических свойств кристалла платины, армированного углеродной нанотрубкой при одноосном растяжении
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1069-1080

    В этой статье рассматриваются механические свойства платины, армированной углеродной нанотрубкой (УНТ), в условиях одноосной растягивающей нагрузки посредством метода молекулярной динамики. Обзор текущих расчетных и экспериментальных исследований подчеркивает преимущества композитов, армированных углеродными нанотрубками с структурной точки зрения. Однако количественные и качественные исследования влияния углеродной нанотрубки на улучшения свойств композитов все еще редки. Выбор композита обусловлен перспективой применения платиновых сплавов во многих сферах, где они могут подвергаться механическим воздействиям, в том числе и в биосовместимых системах. Армирование платины (Pt) с помощью УНТ может обеспечить дополнительные возможности для вживления имплантатов и при этом достичь требуемых механических характеристик.

    Структура композита состояла из кристалла Pt с гранецентрированной кубической решеткой с постоянной 3,92 Å и углеродной нанотрубки. Матрица кристалла платины имеет форму куба с размерами $43,1541 Å \times 43,1541 Å \times 43,1541 Å$. Размер отверстия в середине платиновой матрицы определяется радиусом углеродной нанотрубки типа «зигзаг» (8,0), который составляет 2,6 Å. Углеродная нанотрубка помещается в отверстие радиусом 4,2 Å. При таких параметрах взаимной конфигурации наблюдался минимум энергии взаимодействия. Рассматриваемая модель содержит 320 атомов углерода и 5181 атом платины. Объемная доля углерода в композите Pt-C составляет 5,8%. На первом этапе исследования производились анализ влияния скорости деформации на соотношение «напряжение–деформация» и изменение энергии в процессе одноосного растяжения композита Pt-C.

    Анализ влияния скорости деформации показал, что предел текучести при растяжении увеличивается с увеличением скоростей деформации, а модуль упругости имеет, скорее, тенденцию к уменьшению при увеличении скорости деформации. Данная работа также демонстрирует, что по сравнению с чистой платиной модуль Юнга увеличился на 40% для Pt-C, а эластичность композита меньше на 42,3%. В целом подробно рассмотрены механизмы разрушения, включая пластическую деформацию в атомистическом масштабе.

  5. Жданова О.Л., Жданов В.С., Неверова Г.П.
    Моделирование динамики планктонного сообщества с учетом токсичности фитопланктона
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1301-1323

    Предложена трехкомпонентная модельпланк тонного сообщества с дискретным временем. Сообщество представлено зоопланктоном и двумя конкурирующими за ресурсы видами фитопланктона: токсичным и нетоксичным. Модельдв ух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух видов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из видов-конкурентов доступностью внешних ресурсов. Изъятие фитопланктона за счет питания зоопланктоном описывается трофической функцией Холлинга II типа с учетом насыщения хищника. Способность фитопланктона защищаться от хищничества и избирательность питания хищника учтены в виде ограничения потребления: зоопланктон питается только нетоксичным фитопланктоном.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего сосуществованию двух видов фитопланктона и зоопланктона, может происходитьч ерез каскад бифуркаций удвоения периода, также возникает бифуркация Неймарка – Сакера, ведущая к возникновению квазипериодических колебаний. Вариация внутрипопуляционных параметров фито- или зоопланктона может приводитьк выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. В областях мультистабильности возможна кардинальная смена как динамического режима, так и состава сообщества за счет изменения начальных условий или же текущего состава сообщества. Предложенная в данной работе трехкомпонентная модель динамики сообщества с дискретным временем, являясь достаточно простой, позволяет получитьадекв атную динамику взаимодействующих видов: возникают динамические режимы, отражающие основные свойства экспериментальной динамики. Так, наблюдается динамика характерная для модели «хищник–жертва» без учета эволюции — с отставанием динамики хищника от жертвы примерно на четвертьперио да. Рассмотрение генетической неоднородности фитопланктона, даже в случае выделения всего двух генетически различных форм: токсичного и нетоксичного, позволяет наблюдатьв модели как длиннопериодические противофазные циклы хищника и жертвы, так и скрытые циклы, при которых плотностьч исленности жертв остается практически постоянной, а плотность численности хищников колеблется, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие видов.

  6. Winn A.P., Чжо Т., Трояновский В.М., Аунг Я.Л.
    Методика и программа для накопления и статистического анализа результатов компьютерного эксперимента
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 589-595

    Решается задача накопления и статистического анализа результатов компьютерного эксперимента. Программа основного эксперимента рассматривается в рамках разработанной методики как источник данных, собираемых на специально подготовленный лист Excel с заранее организованной структурой для накопления, статистической обработки и визуализации данных. Созданная методика и программа использованы при исследовании эффективности корреляционных методов выделения гармонического сигнала на фоне помех по реализации ограниченной длины.

    Просмотров за год: 1. Цитирований: 5 (РИНЦ).
  7. Казарян М., Якушкина Т.С., Саакян Д.Б.
    Эволюционная динамика для многомерного ландшафта приспособленности
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1269-1277

    В данной работе рассматривается одна из самых значимых моделей популяционной генетики — модель Кроу–Кимуры. В последнее десятилетие были исследованы модели с ландшафтами приспособленности малой размерности. Цель статьи состоит в анализе модели Кроу–Кимуры c многомерным ландшафтом приспособленности в рамках формализма Гамильтона–Якоби. Для случая однопикового ландшафта приспособленности выводятся точные аналитические выражения, которые подтверждаются численно.

    Просмотров за год: 4.
  8. Цвященко Е.В.
    Анализ адекватности модели строгого согласования реплик в базах данных NoSQL
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 101-112

    В статье анализируется модель сильного согласования реплик в базах данных NoSQL. Описывается процесс подготовки и проведения натурного эксперимента в облаке для доказательства адекватности модели. Приводятся спецификации программ, с помощью которых производился доступ к NoSQL-системе? и программы обработки журналов. Часть из полученных экспериментальным путем данных использовалась для адаптации модели, другая часть — для оценки адекватности. Приводится анализ адекватности модели.

    Просмотров за год: 2.
  9. Дидыч Я.О., Малинецкий Г.Г.
    Анализ стратегий противников при игре в модифицированный «Морской бой»
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 817-827

    Врабо те рассматривается известная игра «Морской бой». Цель статьи — предложить модифицированную версию «Морского боя» и найти оптимальные стратегии действий игроков в новых правилах. Изменения коснулись как применяемых атакующих стратегий (добавлена новая возможность атаки, охватывающая четыре клетки за один выстрел), размера поля (использовались варианты игры для полей 10 × 10, 20 × 20, 30 × 30), так и правил расстановки кораблей в процессе боя (добавлена возможность перемещения корабля из зоны обстрела). Игра решалась с применением аппарата теории игр: составлены платежные матрицы для каждого варианта изменяемых правил, для них найдены оптимальные смешанные и чистые стратегии. При решении платежных матриц использовался итерационный метод. Симуляция состояла в применении пяти алгоритмов атаки и шести алгоритмов защиты с вариацией параметров при игре «каждого с каждым». Атакующие алгоритмы варьировались в разрезе 100 различных наборов значений, алгоритмы защиты — в разрезе 150 каждый. Важным результатом стало то, что в рамках этих ал- горитмов модифицированный «Морской бой» может быть решен, — то есть могут быть найдены устойчивые чистые или смешанные стратегии поведения, обеспечивающие сторонам оптимальный исход с точки зрения теории игр. Помимо этого, сделана оценка влияния изменений правил стандартного «Морского боя» на результат противостояния. Приведено сравнение с результатами, полученными авторами в предыдущей работе по данной тематике. На основе сопоставления полученных платежных матриц со статистическим анализом, проведенным ранее, отмечено, что стандартный «Морской бой» может быть представлен как частный случай рассмотренных в данной работе модификаций. Задача актуальна как с точки зрения ее применения в военном деле, так и в гражданских областях. Использование результатов статьи способно сохранить ресурсы при геологоразведке, обеспечить преимущество в военном противостоянии, сохранить детали, подвергающиеся разрушительному воздействию, и так далее.

    Просмотров за год: 18.
  10. Ряшко Л.Б., Слепухина Е.С.
    Анализ воздействия аддитивного и параметрического шума на модель нейрона Моррис –Лекара
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 449-468

    Работа посвящена проблеме анализа эффектов, связанных с воздействием аддитивного и параметрического шума на процессы, происходящие в нервной клетке. Это исследование проводится на примере известной модели Моррис–Лекара, которая описывается двумерной системой обыкновенных дифференциальных уравнений. Одним из основных свойств нейрона является возбудимость — способность отвечать на внешнее воздействие резким изменением электрического потенциала на мембране клетки. В данной статье рассматривается набор параметров, при котором модель демонстрирует возбудимость класса 2. Динамика системы исследуется при изменении параметра внешнего тока. Рассматриваются две параметрические зоны: зона моностабильности, в которой единственным аттрактором детерминированной системы является устойчивое равновесие, и зона бистабильности, характеризующаяся сосуществованием устойчивого равновесия и предельного цикла. Показывается, что в обоих случаях под действием шума в системе генерируются колебания смешанных мод (т. е. чередование колебаний малых и больших амплитуд). В зоне моностабильности данный феномен связан с высокой возбудимостью системы, а в зоне бистабильности он объясняется индуцированными шумом переходами между аттракторами. Это явление подтверждается изменениями плотности распределения случайных траекторий, спектральной плотности и статистиками межспайковых интервалов. Проводится сравнение действия аддитивного и параметрического шума. Показывается, что при добавлении параметрического шума стохастическая генерация колебаний смешанных мод наблюдается при меньших интенсивностях, чем при воздействии аддитивного шума. Для количественного анализа этих стохастических феноменов предлагается и применяется подход, основанный на технике функций стохастической чувствительности и методе доверительных областей. В случае устойчивого равновесия это эллипс, а для устойчивого предельного цикла такой областью является доверительная полоса. Исследование взаимного расположения доверительных областей и границы, разделяющей бассейны притяжения аттракторов, при изменении параметров шума позволяет предсказать возникновение индуцированных шумом переходов. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок с результатами прямого численного моделирования.

    Просмотров за год: 11.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.