Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.
Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.
Ключевые слова: сопло, сверхзвуковая струя, турбулентное течение, модели турбулентности, пристеночные функции, ламинарно-турбулентный переход, численное решение, сеточная сходимость.
Simulation of turbulent compressible flows in the FlowVision software
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 805-825Simulation of turbulent compressible gas flows using turbulence models $k-\varepsilon$ standard (KES), $k-\varepsilon$ FlowVision (KEFV) and SST $k-\omega$ is discussed in the given article. A new version of turbulence model KEFV is presented. The results of its testing are shown. Numerical investigation of the discharge of an over-expanded jet from a conic nozzle into unlimited space is performed. The results are compared against experimental data. The dependence of the results on computational mesh is demonstrated. The dependence of the results on turbulence specified at the nozzle inlet is demonstrated. The conclusion is drawn about necessity to allow for compressibility in two-parametric turbulence models. The simple method proposed by Wilcox in 1994 suits well for this purpose. As a result, the range of applicability of the three aforementioned two-parametric turbulence models is essentially extended. Particular values of the constants responsible for the account of compressibility in the Wilcox approach are proposed. It is recommended to specify these values in simulations of compressible flows with use of models KES, KEFV, and SST.
In addition, the question how to obtain correct characteristics of supersonic turbulent flows using two-parametric turbulence models is considered. The calculations on different grids have shown that specifying a laminar flow at the inlet to the nozzle and wall functions at its surfaces, one obtains the laminar core of the flow up to the fifth Mach disk. In order to obtain correct flow characteristics, it is necessary either to specify two parameters characterizing turbulence of the inflowing gas, or to set a “starting” turbulence in a limited volume enveloping the region of presumable laminar-turbulent transition next to the exit from the nozzle. The latter possibility is implemented in model KEFV.
-
Сравнительный анализ методов конечных разностей и контрольного объема на примере решения нестационарной задачи естественной конвекции и теплового излучения в замкнутом кубе, заполненном диатермичной средой
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 567-578Проведен сравнительный анализ двух численных методик моделирования нестационарных режимов термогравитационной конвекции и теплового поверхностного излучения в замкнутой дифференциально обогреваемой кубической полости. Рассматриваемая область решения имела две изотермические противоположные вертикальные грани, остальные стенки являлись адиабатическими. Поверхности стенок считались диффузно-серыми, т. е. их направленные спектральные степень черноты и поглощательная способность не зависят ни от угла, ни от длины волны, но могут зависеть от температуры поверхности. Относительно отраженного излучения использовались два предположения: 1) отраженное излучение является диффузным, т. е. интенсивность отраженного излучения в любой точке границы поверхности равномерно распределена по всем направлениям; 2) отраженное излучение равномерно распределено по каждой поверхности замкнутой области решения. Математическая модель, сформулированная как в естественных переменных «скорость–давление», так и в преобразованных переменных «векторный потенциал–вектор завихренности», реализована численно методом контрольного объема и методом конечных разностей соответственно. Следует отметить, что анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка.
При решении краевой задачи в естественных переменных методом контрольного объема для аппроксимации конвективных слагаемых применялся степенной закон, для диффузионных слагаемых — центральные разности. Разностные уравнения движения и энергии разрешались на основе итерационного метода переменных направлений. Для поиска поля давления, согласованного с полем скорости, применялась процедура SIMPLE.
В случае метода конечных разностей и преобразованных переменных для аппроксимации конвективных слагаемых применялась монотонная схема Самарского, для диффузионных слагаемых — центральные разности. Уравнения параболического типа разрешались на основе локально-одномерной схемы Самарского. Дискретизация уравнений эллиптического типа для компонент векторного потенциала проводилась с использованием формул симметричной аппроксимации вторых производных. При этом полученное разностное уравнение разрешалось методом последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов.
В результате показано полное согласование полученных распределений скорости и температуры при различных значениях числа Рэлея, что отражает работоспособность представленных методик. Продемонстрирована эффективность использования преобразованных переменных и метода конечных разностей при решении класса нестационарных задач.
Ключевые слова: естественная конвекция, тепловое поверхностное излучение, диатермичная среда, естественные переменные, метод контрольного объема, преобразованные переменные, метод конечных разностей.
Comparative analysis of finite difference method and finite volume method for unsteady natural convection and thermal radiation in a cubical cavity filled with a diathermic medium
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 567-578Просмотров за год: 13. Цитирований: 1 (РИНЦ).Comparative analysis of two numerical methods for simulation of unsteady natural convection and thermal surface radiation within a differentially heated cubical cavity has been carried out. The considered domain of interest had two isothermal opposite vertical faces, while other walls are adiabatic. The walls surfaces were diffuse and gray, namely, their directional spectral emissivity and absorptance do not depend on direction or wavelength but can depend on surface temperature. For the reflected radiation we had two approaches such as: 1) the reflected radiation is diffuse, namely, an intensity of the reflected radiation in any point of the surface is uniform for all directions; 2) the reflected radiation is uniform for each surface of the considered enclosure. Mathematical models formulated both in primitive variables “velocity–pressure” and in transformed variables “vector potential functions – vorticity vector” have been performed numerically using finite volume method and finite difference methods, respectively. It should be noted that radiative heat transfer has been analyzed using the net-radiation method in Poljak approach.
Using primitive variables and finite volume method for the considered boundary-value problem we applied power-law for an approximation of convective terms and central differences for an approximation of diffusive terms. The difference motion and energy equations have been solved using iterative method of alternating directions. Definition of the pressure field associated with velocity field has been performed using SIMPLE procedure.
Using transformed variables and finite difference method for the considered boundary-value problem we applied monotonic Samarsky scheme for convective terms and central differences for diffusive terms. Parabolic equations have been solved using locally one-dimensional Samarsky scheme. Discretization of elliptic equations for vector potential functions has been conducted using symmetric approximation of the second-order derivatives. Obtained difference equation has been solved by successive over-relaxation method. Optimal value of the relaxation parameter has been found on the basis of computational experiments.
As a result we have found the similar distributions of velocity and temperature in the case of these two approaches for different values of Rayleigh number, that illustrates an operability of the used techniques. The efficiency of transformed variables with finite difference method for unsteady problems has been shown.
-
Методические аспекты численного решения задач внешнего обтекания на локально-адаптивных сетках с использованием пристеночных функций
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1269-1290Работа посвящена исследованию возможности повышения эффективности решения задач внешней аэродинамики. Изучаются методические аспекты применения локально-адаптивных неструктурированных расчетных сеток и пристеночных функций для численного моделирования турбулентных течений около летательных аппаратов. Интегрируются осредненные по Рейнольдсу уравнения Навье–Стокса, которые замыкаются стандартной моделью турбулентности $k–\varepsilon$. Рассматривается обтекание крылового профиля RAE 2822 турбулентным дозвуковым потоком вязкого сжимаемого газа. Расчеты проводятся в программном ВГД-комплексе FlowVision. Анализируется эффективность применения технологии сглаживания диффузионных потоков и формулы Брэдшоу для турбулентной вязкости в качестве мер, повышающих точность решения аэродинамических задач на локально-адаптивных сетках. Результаты исследования показывают, что использование технологии сглаживания диффузионных потоков приводит к существенному уменьшению расхождений в величине коэффициента лобового сопротивления между результатами расчетов и экспериментальными данными. Кроме того, обеспечивается регуляризация распределения коэффициента поверхностного трения на криволинейной поверхности профиля. Эти результаты позволяют сделать вывод о том, что данная технология является эффективным способом повышения точности расчетов на локально-адаптивных сетках. Формула Брэдшоу для динамического коэффициента турбулентной вязкости традиционно используется в модели SST $k–\omega$. В настоящей работе исследуется возможность ее применения в стандартной $k–\varepsilon$-модели турбулентности. Результаты расчетов показывают, что, с одной стороны, данная формула обеспечивает хорошее согласование суммарных аэродинамических характеристик и распределения коэффициента давления по поверхности профиля с экспериментом. Помимо этого, она значительно повышает точность моделирования течения в пограничном слое и в следе. С другой стороны, использование формулы Брэдшоу при моделировании обтекания профиля RAE 2822 приводит к занижению коэффициента поверхностного трения. Поэтому в работе делается вывод о том, что практическое применение формулы Брэдшоу требует ее предварительной валидации и калибровки на надежных экспериментальных данных для рассматриваемого класса задач. Результаты работы в целом показывают, что при использовании рассмотренных технологий численное решение задач внешнего обтекания на локально-адаптивных сетках с применением пристеночных функций обеспечивает точность, приемлемую для оперативной оценки аэродинамических характеристик, а ПК FlowVision является эффективным инструментом решения задач предварительного аэродинамического проектирования, концептуального проектирования и оптимизации аэродинамических форм.
Ключевые слова: профиль крыла, осредненные по Рейнольдсу уравнения Навье–Стокса, модель турбулентности, формула Брэдшоу, локально-адаптивная расчетная сетка, ПК FlowVision.
Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.
-
Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.
Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.
Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.
Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.
Ключевые слова: численное моделирование, нестационарные уравнения Навье – Стокса, сверхзвуковое обтекание тел, запыленный поток, бессеточный метод, подвижная граница.
Meshless algorithm for calculating the interaction of large particles with a shock layer in supersonic heterogeneous flows
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1007-1027The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.
Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.
Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.
The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.
-
Численный анализ конвективно-радиационного теплопереноса в замкнутой воздушной полости с локальным источником энергии
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 383-396Проведено математическое моделирование естественной конвекции и теплового излучения в квадратной замкнутой воздушной полости с изотермическими вертикальными стенками при наличии локального источника энергии постоянной температуры. Математическая модель построена в безразмерных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска и с учетом диатермичности воздушной среды. Получены распределения изолиний функции тока и температуры в широком диапазоне изменения определяющих параметров: число Рэлея $10^3 \leqslant Ra \leqslant 10^6$, приведенная степень черноты ограждающих стенок $0\leqslant\varepsilon < 1$, отношение длины источника энергии к размеру полости $0.2\leqslant l/L\leqslant0.6$ и время $0\leqslantτ\leqslant 100$. Установлены корреляционные соотношения для интегрального коэффициента теплообмена в зависимости от $Ra$, $ε$ и $l/L$.
Ключевые слова: естественная конвекция, поверхностное излучение, локальный источник постоянной температуры, замкнутая полость, математическое моделирование.
Numerical analysis of convective-radiative heat transfer in an air enclosure with a local heat source
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 383-396Просмотров за год: 1. Цитирований: 5 (РИНЦ).Mathematical simulation of natural convection and surface radiation in a square air enclosure having isothermal vertical walls with a local heat source of constant temperature has been carried out. Mathematical model has been formulated on the basis of the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation and diathermancy of air. Distributions of streamlines and isotherms reflecting an effect of Rayleigh number $ 10^3 \leqslant Ra \leqslant 10^6 $, surface emissivity $0 \leqslant ε < 1$, ratio between the length of heat source and the size of enclosure $0.2 \leqslant l/L \leqslant 0.6$ and dimensionless time $0 \leqslant τ \leqslant 100$ on fluid flow and heat transfer have been obtained. Correlations for the average heat transfer coefficient in dependence on $Ra$, $ε$ and $l/L$ have been ascertained.
-
Моделирование конвективно-радиационного теплопереноса в дифференциально обогреваемой вращающейся полости
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 195-207Проведено математическое моделирование нестационарных режимов естественной конвекции и поверхностного излучения в замкнутой вращающейся квадратной полости. Рассматриваемая область решения имела две противоположные изотермические стенки, поддерживаемые при постоянных низкой и высокой температурах, остальные стенки являлись адиабатическими. Стенки считались диффузно-серыми. Анализируемая полость вращалась с постоянной угловой скоростью относительно оси, проходящей через центр полости и ориентированной ортогонально области решения. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости» на основе приближений Буссинеска и диатермичности рабочей среды, была реализована численно методом конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А. А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А. А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Анализ радиационного теплообмена проведен с использованием метода сальдо в варианте Поляка. Разработанный вычислительный код был протестирован на множестве сеток, а также верифицирован путем сопоставления полученных результатов при решении модельной задачи с экспериментальными и численными данными других авторов.
Численные исследования нестационарных режимов естественной конвекции и поверхностного теплового излучения в замкнутой вращающейся полости проведены при следующих значениях безразмерных параметров: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. Все распределения были получены для двадцатого полного оборота полости, когда наблюдается установление периодической картины течения и теплопереноса. В результате анализа установлено, что при малой угловой скорости вращения полости возможна интенсификация течения, а дальнейший рост скорости вращения приводит к ослаблению конвективного течения. Радиационное число Нуссельта незначительно изменяется при варьировании числа Тейлора.
Ключевые слова: естественная конвекция, тепловое поверхностное излучение, диатермичная среда, вращающаяся полость, метод конечных разностей.
Simulation of convective-radiative heat transfer in a differentially heated rotating cavity
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 195-207Просмотров за год: 20.Mathematical simulation of unsteady natural convection and thermal surface radiation within a rotating square enclosure was performed. The considered domain of interest had two isothermal opposite walls subjected to constant low and high temperatures, while other walls are adiabatic. The walls were diffuse and gray. The considered cavity rotated with constant angular velocity relative to the axis that was perpendicular to the cavity and crossed the cavity in the center. Mathematical model, formulated in dimensionless transformed variables “stream function – vorticity” using the Boussinesq approximation and diathermic approach for the medium, was performed numerically using the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. Radiative heat transfer was analyzed using the net-radiation method in Poljak approach. The developed computational code was tested using the grid independence analysis and experimental and numerical results for the model problem.
Numerical analysis of unsteady natural convection and thermal surface radiation within the rotating enclosure was performed for the following parameters: Ra = 103–106, Ta = 0–105, Pr = 0.7, ε = 0–0.9. All distributions were obtained for the twentieth complete revolution when one can find the periodic behavior of flow and heat transfer. As a result we revealed that at low angular velocity the convective flow can intensify but the following growth of angular velocity leads to suppression of the convective flow. The radiative Nusselt number changes weakly with the Taylor number.
-
Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.
В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.
Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.
As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.
-
Численные исследования нестационарных режимов сопряженной естественной конвекции в пористой цилиндрической области (модель Дарси–Буссинеска)
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 179-191Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.
Ключевые слова: сопряженный теплоперенос, естественная конвекция, приближение Дарси–Буссинеска, пористая цилиндрическая полость, нестационарный режим, численное моделирование.
Numerical simulation of unsteady conjugate natural convection in a cylindrical porous domain (Darcy–Boussinesq model)
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 179-191Просмотров за год: 4. Цитирований: 3 (РИНЦ).Mathematical simulation on unsteady natural convection in a closed porous cylindrical cavity having finite thickness heat-conducting solid walls in conditions of convective heat exchange with an environment has been carried out. A boundary-value problem of mathematical physics formulated in dimensionless variables such as stream function and temperature on the basis of Darcy–Boussinesq model has been solved by finite difference method. Effect of a porous medium permeability 10–5≤Da<∞, ratio between a solid wall thickness and the inner radius of a cylinder 0.1≤h/L≤0.3, a thermal conductivity ratio 1≤λ1,2≤20 and a dimensionless time on both local distributions of isolines and isotherms and integral complexes reflecting an intensity of convective flow and heat transfer has been analyzed in detail.
-
Пристеночные функции для высокорейнольдсовых расчетов в программном комплексе FlowVision
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1221-1239В данной работе представлена модель пристеночных функций FlowVision, позволяющая моделировать турбулентные течения жидкости и газа около твердых непроницаемых поверхностей на разных сетках. Рассматриваются четыре модели турбулентности: $k-\varepsilon$ FlowVision, $k-\varepsilon$ Стандартная, SST $k-\omega$, SA. Обсуждаются особенности реализации моделей турбулентности в программном комплексе FlowVision. Демонстрируются результаты решения двух тестовых задач.
Ключевые слова: турбулентное течение, высокорейнольдсовые расчеты, пристеночные функции, пластина, обратный уступ.
Wall functions for high-Reynolds calculations in FlowVision software
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1221-1239Просмотров за год: 6. Цитирований: 4 (РИНЦ).The article submits wall functions model “FlowVision”. The model allows simulating turbulent flows of fluid and gas over solid impermeable surfaces on different grids. Four turbulence models are considered: $k-\varepsilon$ FlowVision, $k-\varepsilon$ Standard, SST $k-\omega$, SA. Details of implementation of turbulence models in FlowVision software are discussed. Calculations of two test cases are demonstrated.
-
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
Ключевые слова: смешанная конвекция, зависящая от температуры вязкость, тепловыделяющий источник, пористая среда, открытый канал, метод конечных разностей.
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Просмотров за год: 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"