Текущий выпуск Номер 1, 2024 Том 16

Все выпуски

Результаты поиска по 'nozzle':
Найдено статей: 4
  1. Жлуктов С.В., Аксёнов А.А., Кураносов Н.С.
    Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825

    В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.

    Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.

    Zhluktov S.V., Aksenov A.A., Kuranosov N.S.
    Simulation of turbulent compressible flows in the FlowVision software
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 805-825

    Simulation of turbulent compressible gas flows using turbulence models $k-\varepsilon$ standard (KES), $k-\varepsilon$ FlowVision (KEFV) and SST $k-\omega$ is discussed in the given article. A new version of turbulence model KEFV is presented. The results of its testing are shown. Numerical investigation of the discharge of an over-expanded jet from a conic nozzle into unlimited space is performed. The results are compared against experimental data. The dependence of the results on computational mesh is demonstrated. The dependence of the results on turbulence specified at the nozzle inlet is demonstrated. The conclusion is drawn about necessity to allow for compressibility in two-parametric turbulence models. The simple method proposed by Wilcox in 1994 suits well for this purpose. As a result, the range of applicability of the three aforementioned two-parametric turbulence models is essentially extended. Particular values of the constants responsible for the account of compressibility in the Wilcox approach are proposed. It is recommended to specify these values in simulations of compressible flows with use of models KES, KEFV, and SST.

    In addition, the question how to obtain correct characteristics of supersonic turbulent flows using two-parametric turbulence models is considered. The calculations on different grids have shown that specifying a laminar flow at the inlet to the nozzle and wall functions at its surfaces, one obtains the laminar core of the flow up to the fifth Mach disk. In order to obtain correct flow characteristics, it is necessary either to specify two parameters characterizing turbulence of the inflowing gas, or to set a “starting” turbulence in a limited volume enveloping the region of presumable laminar-turbulent transition next to the exit from the nozzle. The latter possibility is implemented in model KEFV.

  2. Фишер Ю.В., Щеляев А.Е.
    Верификация расчетных характеристик сверхзвуковых турбулентных струй
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 21-35

    В статье приводятся результаты верификационных расчетов в программном комплексе вычислительной аэро-, гидродинамики FlowVision характеристик сверхзвуковых турбулентных струй. Численное моделирование в статье охватывает несколько известных экспериментов по исследованию сверхзвуковых струй, находящихся в свободном доступе. Представленные тестовые случаи включают в себя тесты Сейнера с числом Маха на срезе $M = 2$ при расчетном $(n = 1)$ и нерасчетном $(n = 1.47)$ истечении из сопла в широком диапазоне температур газа. В работе также проведен численный эксперимент по распространению сверхзвуковой струи в спутном сверхзвуковом потоке $M = 2.2$. Для данного теста заданы параметры, определенные в эксперименте Putnam: степень понижения давления в сопле $\mathrm{NPR} = 8.12$ и полная температура $T = 317 \, \mathrm{K}$.

    Показано сравнение расчетов FlowVision с экспериментальными и полученными в других расчетных кодах данными. Наилучшее совпадение с экспериментом Сейнера среди рассмотренных моделей турбулентности получено при использовании стандартной $k–\varepsilon$ модели турбулентности с установленной поправкой на сжимаемость по модели Wilcox. Достигнуто согласование с экспериментальными данными на дальнем следе до 7 % по скорости потока на оси сопла. Для струи в спутном потоке расчетная характеристика (число Маха) отличается на 3 % от экспериментальной.

    В работе определены общие рекомендации к построению методики моделирования FlowVision сверхзвуковых турбулентных струй. В ходе исследования сходимости по сетке получены оптимальные размеры ячеек расчетной сетки: для расчетного истечения достаточно 40 ячеек по радиусу сопла и в области формирования струи, а для нерасчетных режимов необходимо не менее 80 ячеек по радиусу для точного моделирования ударно-волновой структуры вблизи выхода из сопла.

    Влияние применяемых моделей турбулентности показано на примере расчета теста Сейнера. SST-модель турбулентности, применяемая в FlowVision, существенно занижает скорость на оси сопла, для расчета струй данная модель не рекомендуется даже для предварительных оценок. Стандартная $k–\varepsilon$ модель без учета сжимаемости также несколько занижает скорость газа. Модель турбулентности KEFV, разработанная для FlowVision, показывает хорошее согласование и несколько завышает «дальнобойность» струи. И наилучшее совпадение с экспериментом по исследуемым характеристикам турбулентных струй получено при расчетах на стандартной $k–\varepsilon$ модели с учетом сжимаемости, соответствующей модели Wilcox. Представленная методика может быть взята за основу при моделировании истечения из сверхзвуковых сопел более сложной геометрии.

    Fisher J.V., Schelyaev A.E.
    Verification of calculated characteristics of supersonic turbulent jets
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 21-35

    Verification results of supersonic turbulent jets computational characteristics are presented. Numerical simulation of axisymmetric nozzle operating is realized using FlowVision CFD. Open test cases for CFD are used. The test cases include Seiner tests with exit Mach number of 2.0 both fully-expanded and under-expanded $(P/P_0 = 1.47)$. Fully-expanded nozzle investigated with wide range of flow temperature (300…3000 K). The considered studies include simulation downstream from the nozzle exit diameter. Next numerical investigation is presented at an exit Mach number of 2.02 and a free-stream Mach number of 2.2. Geometric model of convergent- divergent nozzle rebuilt from original Putnam experiment. This study is set with nozzle pressure ratio of 8.12 and total temperature of 317 K.

    The paper provides a comparison of obtained FlowVision results with experimental data and another current CFD studies. A comparison of the calculated characteristics and experimental data indicates a good agreement. The best coincidence with Seiner's experimental velocity distribution (about 7 % at far field for the first case) obtained using two-equation $k–\varepsilon$ standard turbulence model with Wilcox compressibility correction. Predicted Mach number distribution at $Y/D = 1$ for Putnam nozzle presents accuracy of 3 %.

    General guidelines for simulation of supersonic turbulent jets in the FlowVision software are formulated in the given paper. Grid convergence determined the optimal cell rate. In order to calculate the design regime, it is recommended to build a grid, containing not less than 40 cells from the axis of symmetry to the nozzle wall. In order to calculate an off-design regime, it is necessary to resolve the shock waves. For this purpose, not less than 80 cells is required in the radial direction. Investigation of the influence of turbulence model on the flow characteristics has shown that the version of the SST $k–\omega$ turbulence model implemented in the FlowVision software essentially underpredicts the axial velocity. The standard $k–\varepsilon$ model without compressibility correction also underpredicts the axial velocity. These calculations agree well with calculations in other CFD codes using the standard $k–\varepsilon$ model. The in-home $k–\varepsilon$ turbulence model KEFV with compressibility correction a little bit overpredicts the axial velocity. Since, the best results are obtained using the standard $k–\varepsilon$ model combined with the Wilcox compressibility correction, this model is recommended for the problems discussed.

    The developed methodology can be regarded as a basis for numerical investigations of more complex nozzle flows.

    Просмотров за год: 43.
  3. Minkov L., Dueck J.
    CFD-modeling of a flow in a hydrocyclone with an additional water injector
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 63-76

    The paper is an example of computer simulation in mechanical engineering. Velocity field in a hydrocyclone are determined numerically, because for direct measurements it is difficult to achieve them. The numerical simulation of 3D fluid dynamics based on the k-eps RNG model of turbulence in the hydrocyclone with the injector, containing 5 tangentially directed nozzles is considered. It is shown that the direction of movement of
    injected fluid in the hydrocyclone depends on the water flow rate through the injector. The calculations show in accordance with the experiments that the dependence of the Split-parameter on the injected water flow rate has a non-monotone character associated with the ratio of power of the main flow and the injected fluid.

    Ключевые слова: hydrocyclone, injection, computational fluid dynamics.
    Миньков Л.Л., Дик И.Г.
    Моделирование течения в гидроциклоне с дополнительным инжектором
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 63-76

    Статья представляет собой пример компьютерного моделирования в области инженерной механики. Численным методом находятся поля скорости в гидроциклоне, которые недоступны прямому измерению. Рассматривается численное моделирование трехмерной гидродинамики на основе k-ε RNG модели турбулентности в гидроциклоне со встроенным инжектором, содержащим 5 тангенциально направленных сопла. Показано, что направление движения инжектируемой жидкости зависит от расхода жидкости через инжектор. Расчеты показывают в соответствии с экспериментами, что зависимость сплит-параметра от расхода инжектируемой жидкости имеет немонотонный характер, связанный с отношением мощности основного потока и инжектируемой жидкости.

    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
  4. Аксёнов А.А., Жлуктов С.В., Каширин В.С., Сазонова М.Л., Черный С.Г., Дроздова Е.А., Роде А.А.
    Численное моделирование в ПК FlowVision распыла и испарения сырья в потоке газа-теплоносителя при печном производстве технического углерода
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 921-939

    Технический углерод (сажа) — продукт, получаемый термическим разложением (пиролизом) углеводородов (как правило, нефти) в потоке газа-теплоносителя. Технический углерод широко применяется в качестве усиливающего компонента в производстве резин и пластических масс. В производстве шин используется 70% всего выпускаемого углерода. При печном производстве углерода жидкое углеводородное сырье впрыскивается форсунками в поток продуктов сгорания природного газа. Происходит распыл и испарение сырья с дальнейшим пиролизом. Важно, чтобы сырье полностью испарилось до начала пиролиза, иначе будет образовываться кокс, загрязняющий продукт. Для совершенствования технологии производства углерода, в частности обеспечения полного испарения сырья до начала пиролиза, невозможно обойтись без математического моделирования самого процесса. Оно является важнейшим способом получения наиболее полной и детальной информации об особенностях работы реактора.

    В программном комплексе (ПК) FlowVision разрабатываются трехмерная математическая модель и метод расчета распыла и испарения сырья в потоке газа-теплоносителя. Для отработки методики моделирования в качестве сырья выбрана вода. Рабочими веществами в камере реактора являются продукты сгорания природного газа. Движение капель сырья и испарение в потоке газа моделируются в рамках эйлерова подхода взаимодействия дисперсной и сплошной сред. Представлены результаты расчета распыла и испарения сырья в реакторе для производства технического углерода. По найденному в каждый момент времени распределению множества капель распыла сырья в реакторе определяется важный параметр, характеризующий мелкость распыла — средний саутеровский диаметр.

    Aksenov A.A., Zhluktov S.V., Kashirin V.S., Sazonova M.L., Cherny S.G., Drozdova E.A., Rode A.A.
    Numerical modeling of raw atomization and vaporization by flow of heat carrier gas in furnace technical carbon production into FlowVision
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 921-939

    Technical carbon (soot) is a product obtained by thermal decomposition (pyrolysis) of hydrocarbons (usually oil) in a stream of heat carrier gas. Technical carbon is widely used as a reinforcing component in the production of rubber and plastic masses. Tire production uses 70% of all carbon produced. In furnace carbon production, the liquid hydrocarbon feedstock is injected into the natural gas combustion product stream through nozzles. The raw material is atomized and vaporized with further pyrolysis. It is important for the raw material to be completely evaporated before the pyrolysis process starts, otherwise coke, that contaminates the product, will be produced. It is impossible to operate without mathematical modeling of the process itself in order to improve the carbon production technology, in particular, to provide the complete evaporation of the raw material prior to the pyrolysis process. Mathematical modelling is the most important way to obtain the most complete and detailed information about the peculiarities of reactor operation.

    A three-dimensional mathematical model and calculation method for raw material atomization and evaporation in the thermal gas flow are being developed in the FlowVision software package PC. Water is selected as a raw material to work out the modeling technique. The working substances in the reactor chamber are the combustion products of natural gas. The motion of raw material droplets and evaporation in the gas stream are modeled in the framework of the Eulerian approach of interaction between dispersed and continuous media. The simulation results of raw materials atomization and evaporation in a real reactor for technical carbon production are presented. Numerical method allows to determine an important atomization characteristic: average Sauter diameter. That parameter could be defined from distribution of droplets of raw material at each time of spray forming.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.