Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'traffic flows':
Найдено статей: 22
  1. Быков Н.В.
    Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058

    Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.

    Bykov N.V.
    A simulation model of connected automated vehicles platoon dynamics in a heterogeneous traffic flow
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1041-1058

    The gradual incorporation of automated vehicles into the global transport networks leads to the need to develop tools to assess the impact of this process on various aspects of traffic. This implies a more organized movement of automated vehicles which can form uniformly moving platoons. The influence of the formation and movement of these platoons on the dynamics of traffic flow is of great interest. The currently most developed traffic flow models are based on the cellular automaton approach. They are mainly developed in the direction of increasing accuracy. This inevitably leads to the complication of models, which in their modern form have significantly moved away from the original philosophy of cellular automata, which implies simplicity and schematicity of models at the level of evolution rules, leading, however, to a complex organized behavior of the system. In the present paper, a simulation model of connected automated vehicles platoon dynamics in a heterogeneous transport system is proposed, consisting of two types of agents (vehicles): human-driven and automated. The description of the temporal evolution of the system is based on modified rules 184 and 240 for elementary cellular automata. Human-driven vehicles move according to rule 184 with the addition of accidental braking, the probability of which depends on the distance to the vehicle in front. For automated vehicles, a combination of rules is used depending on the type of nearest neighbors, regardless of the distance to them, which brings non-local interaction to the model. At the same time, it is considered that a group of sequentially moving connected automated vehicles can form an organized platoon. The influence of the ratio of types of vehicles in the system on the characteristics of the traffic flow during free movement on a circular one-lane and two-lane roads, as well as in the presence of a traffic light, is studied. The simulation results show that the effect of platoon formation is significant for a freeway traffic flow; the presence of a traffic light reduces the positive effect by about half. The movement of platoons of connected automated vehicles on two-lane roads with the possibility of lane changing was also studied. It is shown that considering the types of neighboring vehicles (automated or human-driven) when changing lanes for automated vehicles has a positive effect on the characteristics of the traffic flow.

  2. Игнашин И.Н., Ярмошик Д.В.
    Модификации алгоритма Frank–Wolfe в задаче поиска равновесного распределения транспортных потоков
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 53-68

    В работе приведены различные модификации алгоритма Frank–Wolfe для задачи поиска равновесного распределения потоков. В качестве модели для экспериментов используется модель Бекмана. В этой статье в первую очередь уделяется внимание выбору направления базового шага алгоритма Frank–Wolfe (FW). Будут представлены алгоритмы: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank–Wolfe (FFW). Каждой модификации соответствуют различные подходы к выбору этого направления. Некоторые из этих модификаций описаны в предыдущих работах авторов. В данной статье будут предложены алгоритмы N-conjugate Frank–Wolfe (NFW) и Weighted Fukushima Frank–Wolfe (WFFW). Эти алгоритмы являются некоторым идейным продолжением алгоритмов BFW и FFW. Таким образом, если первый алгоритм использовал на каждой итерации два последних направления предыдущих итераций для выбора следующего направления, сопряженного к ним, то предложенный алгоритм NFW использует $N$ предыдущих направлений. В случае же Fukushima Frank –Wolfe в качестве следующего направления берется среднее от нескольких предыдущих направлений. Соответственно этому алгоритму предложена модификация WFFW, использующая экспоненциальное сглаживание по предыдущим направлениям. Для сравнительного анализа были проведены эксперименты с различными модификациями на нескольких наборах данных, представляющих городские структуры и взятых из общедоступных источников. За метрику качества была взята величина относительного зазора. Результаты экспериментов показали преимущество алгоритмов, использующих предыдущие направления для выбора шага, перед классическим алгоритмом Frank–Wolfe. Кроме того, было выявлено улучшение эффективности при использовании более двух сопряженных направлений. Например, на многих датасетах модификация 3-conjugate FW сходилась наилучшим образом. Кроме того, предложенная модификация WFFW зачастую обгоняла FFW и CFW, хотя и проигрывала модификациям NFW.

    Ignashin I.N., Yarmoshik D.V.
    Modifications of the Frank –Wolfe algorithm in the problem of finding the equilibrium distribution of traffic flows
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 53-68

    The paper presents various modifications of the Frank–Wolfe algorithm in the equilibrium traffic assignment problem. The Beckman model is used as a model for experiments. In this article, first of all, attention is paid to the choice of the direction of the basic step of the Frank–Wolfe algorithm. Algorithms will be presented: Conjugate Frank–Wolfe (CFW), Bi-conjugate Frank–Wolfe (BFW), Fukushima Frank –Wolfe (FFW). Each modification corresponds to different approaches to the choice of this direction. Some of these modifications are described in previous works of the authors. In this article, following algorithms will be proposed: N-conjugate Frank–Wolfe (NFW), Weighted Fukushima Frank–Wolfe (WFFW). These algorithms are some ideological continuation of the BFW and FFW algorithms. Thus, if the first algorithm used at each iteration the last two directions of the previous iterations to select the next direction conjugate to them, then the proposed algorithm NFW is using more than $N$ previous directions. In the case of Fukushima Frank–Wolfe, the average of several previous directions is taken as the next direction. According to this algorithm, a modification WFFW is proposed, which uses a exponential smoothing from previous directions. For comparative analysis, experiments with various modifications were carried out on several data sets representing urban structures and taken from publicly available sources. The relative gap value was taken as the quality metric. The experimental results showed the advantage of algorithms using the previous directions for step selection over the classic Frank–Wolfe algorithm. In addition, an improvement in efficiency was revealed when using more than two conjugate directions. For example, on various datasets, the modification 3FW showed the best convergence. In addition, the proposed modification WFFW often overtook FFW and CFW, although performed worse than NFW.

  3. Морозов И.И., Гасников А.В., Тарасов В.Н., Холодов Я.А., Холодов А.С.
    Численное исследование транспортных потоков на основе гидродинамических моделей
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 389-412

    Целью данной работы является обобщение макроскопических гидродинамических моделей, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным наблюдаемым условиям уравнения состояния — зависимости давления от плотности транспортного потока, определяемого по экспериментальным данным (возможно, с использованием параметрических решений модельных уравнений). Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства исследуемой феноменологической
    модели.

    Morozov I.I., Gasnikov A.V., Tarasov V.N., Kholodov Y.A., Kholodov A.S.
    Numerical study of traffic flows by the hydrodynamic models
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 389-412

    The purpose of this paper is to generalize the macroscopic hydrodynamic vehicular traffic models by using the algorithm for constructing the adequate state equation — dependence the pressure from traffic density by taking into account the real experimental data (possibly using the parametric solutions for model equations). It is proved that this kind of state equation which closed model equations system and obtained from the experimentally observed form of the fundamental diagram — dependence the traffic intensity from its density, completely determines the all properties of the used phenomenological model.

    Просмотров за год: 7. Цитирований: 7 (РИНЦ).
  4. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

    Kotliarova E.V., Gasnikov A.V., Gasnikova E.V., Yarmoshik D.V.
    Finding equilibrium in two-stage traffic assignment model
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 365-379

    Authors describe a two-stage traffic assignment model. It contains of two blocks. The first block consists of a model for calculating a correspondence (demand) matrix, whereas the second block is a traffic assignment model. The first model calculates a matrix of correspondences using a matrix of transport costs (it characterizes the required volumes of movement from one area to another, it is time in this case). To solve this problem, authors propose to use one of the most popular methods of calculating the correspondence matrix in urban studies — the entropy model. The second model describes exactly how the needs for displacement specified by the correspondence matrix are distributed along the possible paths. Knowing the ways of the flows distribution along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage model is a fixed point in the sequence of these two models. In practice the problem of finding a fixed point can be solved by the fixed-point iteration method. Unfortunately, at the moment the issue of convergence and estimations of the convergence rate for this method has not been studied quite thoroughly. In addition, the numerical implementation of the algorithm results in many problems. In particular, if the starting point is incorrect, situations may arise where the algorithm requires extremely large numbers to be computed and exceeds the available memory even on the most modern computers. Therefore the article proposes a method for reducing the problem of finding the equilibrium to the problem of the convex non-smooth optimization. Also a numerical method for solving the obtained optimization problem is proposed. Numerical experiments were carried out for both methods of solving the problem. The authors used data for Vladivostok (for this city information from various sources was processed and collected in a new dataset) and two smaller cities in the USA. It was not possible to achieve convergence by the method of fixed-point iteration, whereas the second model for the same dataset demonstrated convergence rate $k^{-1.67}$.

  5. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Gasnikov A.V., Kubentayeva M.B.
    Searching stochastic equilibria in transport networks by universal primal-dual gradient method
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345

    We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.

    Просмотров за год: 28.
  6. Минниханов Р.Н., Аникин И.В., Дагаева М.В., Файзрахманов Э.М., Большаков Т.Е.
    Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404

    Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.

    Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Faizrakhmanov E.M., Bolshakov T.E.
    Modeling of the effective environment in the Republic of Tatarstan using transport data
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 395-404

    Automated urban traffic monitoring systems are widely used to solve various tasks in intelligent transport systems of different regions. They include video enforcement, video surveillance, traffic management system, etc. Effective traffic management and rapid response to traffic incidents require continuous monitoring and analysis of information from these complexes, as well as time series forecasting for further anomaly detection in traffic flow. To increase the forecasting quality, data fusion from different sources is needed. It will reduce the forecasting error, related to possible incorrect values and data gaps. We implemented the approach for short-term and middle-term forecasting of traffic flow (5, 10, 15 min) based on data fusion from video enforcement and video surveillance systems. We made forecasting using different recurrent neural network architectures: LSTM, GRU, and bidirectional LSTM with one and two layers. We investigated the forecasting quality of bidirectional LSTM with 64 and 128 neurons in hidden layers. The input window size (1, 4, 12, 24, 48) was investigated. The RMSE value was used as a forecasting error. We got minimum RMSE = 0.032405 for basic LSTM with 64 neurons in the hidden layer and window size = 24.

  7. Прокопцев Н.Г., Алексеенко А.Е., Холодов Я.А.
    Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367

    Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.

    Prokoptsev N.G., Alekseenko A.E., Kholodov Y.A.
    Traffic flow speed prediction on transportation graph with convolutional neural networks
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367

    The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.

    Просмотров за год: 36.
  8. Котлярова Е.В., Кривошеев К.Ю., Гасникова Е.В., Шароватова Ю.И., Шурупов А.В.
    Обоснование связи модели Бэкмана с вырождающимися функциями затрат с моделью стабильной динамики
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 335-342

    С 50-х годов XX века транспортное моделирование крупных мегаполисов стало усиленно развиваться. Появились первые модели равновесного распределения потоков по путям. Наиболее популярной (и использующейся до сих пор) моделью была модель Бэкмана и др. 1955 г. В основу этой модели положены два принципа Вардропа. На современном теоретико-игровом языке можно кратко описать суть модели как поиск равновесия Нэша в популяционной игре загрузки, в которой потери игроков (водителей) рассчитываются исходя из выбранного пути и загрузках на этом пути, при фиксированных корреспонденциях. Загрузки (затраты) на пути рассчитываются как сумма затрат на различных участках дороги (ребрах графа транспортной сети). Затраты на ребре (время проезда по ребру) определяется величиной потока автомобилей на этом ребре. Поток на ребре, в свою очередь, определяется суммой потоков по всем путям, проходящим через заданное ребро. Таким образом, затраты на проезд по пути определяются не только выбором пути, но и тем, какие пути выбрали остальные водители. Таким образом, мы находимся в стандартной теоретико-игровой постановке. Специфика формирования функций затрат позволяет сводить поиск равновесия к решению задачи оптимизации (игра потенциальная). Эта задача оптимизации будет выпуклой, если функции затрат монотонно неубывающие. Собственно, различные предположения о функциях затрат формируют различные модели. Наиболее популярной моделью является модель с функцией затрат BPR. Такие функции используются при расчетах реальных городов повсеместно. Однако в начале XXI века Ю. Е. Нестеровым и А. де Пальмой было показано, что модели типа Бэкмана имеют серьезные недостатки. Эти недостатки можно исправить, используя модель, которую авторы назвали моделью стабильной динамики. Поиск равновесия в такой модели также сводится к задаче оптимизации. Точнее, даже задаче линейного программирования. В 2013 г. А. В. Гасниковым было обнаружено, что модель стабильной ди- намики может быть получена предельным переходом, связанным с поведением функции затрат, из модели Бэкмана. Однако обоснование упомянутого предельного перехода было сделано в нескольких важных (для практики), но все- таки частных случаях. В общем случае вопрос о возможности такого предельного перехода, насколько нам известно, остается открытым. Данная работа закрывает данный зазор. В статье в общем случае приводится обоснование возможности отмеченного предельного перехода (когда функция затрат на проезд по ребру как функция потока по ребру вырождается в функцию, равную постоянным затратам до достижения пропускной способности, и равна плюс бесконечности, при превышении пропускной способности).

    Kotliarova E.V., Krivosheev K.Yu., Gasnikova E.V., Sharovatova Y.I., Shurupov A.V.
    Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342

    Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.

  9. Котлярова Е.В., Северилов П.А., Ивченков Я.П., Мокров П.В., Чеканов М.О., Гасникова Е.В., Шароватова Ю.И.
    Ускорение работы двухстадийной модели равновесного распределения потоков по сети
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 343-355

    В работе приведены возможные улучшения двухстадийной модели равновесного распределения транспортных потоков, повышающие качество детализации моделирования и скорость вычисления алгоритмов. Модель состоит из двух блоков, первый блок — модель расчета матрицы корреспонденций, второй блок — модель равновесного распределения транспортных потоков по путям. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Более подробно теория и эксперименты по данной модели были описаны в предыдущих работах авторов. В этой статье в первую очередь рассмотрена возможность сокращения вычислительного времени алгоритма расчета кратчайших путей (в модели стабильной динамики, равновесно распределяющей потоки). В исходном варианте эта задача была выполнена с помощью алгоритма Дийкстры, но, так как после каждой итерации блока распределения транспортных потоков, время, требующееся для прохода по ребру, изменяется не на всех ребрах (и если изменяется, то очень незначительно), во многом этот алгоритм был избыточен. Поэтому были проведены эксперименты с более новым методом, учитывающим подобные особенности, и приведен краткий обзор других ускоряющих подходов для будущих исследований. Эксперименты показали, что в некоторых случаях использование выбранного T-SWSF-алгоритма действительно сокращает вычислительное время. Во вторую очередь в блоке восстановления матрицы корреспонденций алгоритм Синхорна был заменен на алгоритм ускоренного Синхорна (или AAM-алгоритм), что, к сожалению, не показало ожидаемых результатов, расчетное время не изменилось. Инак онец, в третьем и финальном разделе приведена визуализация результатов экспериментов по добавлению платных дорог в двухстадийную модель, что помогло сократить количество перегруженных ребер в сети. Также во введении кратко описана мотивация данных исследований, приведено описание работы двухстадийной модели, а также на маленьком примере с двумя городами разобрано, как с ее помощью выполняется поиск равновесия.

    Kotliarova E.V., Severilov P.A., Ivchenkov Y.P., Mokrov P.V., Chekanov M.O., Gasnikova E.V., Sharovatova Y.I.
    Speeding up the two-stage simultaneous traffic assignment model
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 343-355

    This article describes possible improvements for the simultaneous multi-stage transport model code for speeding up computations and improving the model detailing. The model consists of two blocks, where the first block is intended to calculate the correspondence matrix, and the second block computes the equilibrium distribution of traffic flows along the routes. The first block uses a matrix of transport costs that calculates a matrix of correspondences. It describes the costs (time in our case) of travel from one area to another. The second block presents how exactly the drivers (agents) are distributed along the possible paths. So, knowing the distribution of the flows along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage traffic flow model is a fixed point of a sequence of the two described models. Thus, in this paper we report an attempt to influence the calculation speed of Dijkstra’s algorithm part of the model. It is used to calculate the shortest path from one point to another, which should be re-calculated after each iteration of the flow distribution part. We also study and implement the road pricing in the model code, as well as we replace the Sinkhorn algorithm in the calculation of the correspondence matrix part with its faster implementation. In the beginning of the paper, we provide a short theoretical overview of the transport modelling motivation; we discuss current approaches to the modelling and provide an example for demonstration of how the whole cycle of multi-stage transport modelling works.

  10. Софронова Е.А., Дивеев А.И., Казарян Д.Э., Константинов С.В., Дарьина А.Н., Селиверстов Я.А., Баскин Л.А.
    Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159

    Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.

    Sofronova E.A., Diveev A.I., Kazaryan D.E., Konstantinov S.V., Daryina A.N., Seliverstov Y.A., Baskin L.A.
    Utilizing multi-source real data for traffic flow optimization in CTraf
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159

    The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.